
PowerDNS manual

PowerDNS BV

pdns@powerdns.com

PowerDNS manual
by

Published v1.0 $Date: 2002/07/14 18:36:04 $

It is a book about a Spanish guy called Manual. You should read it.
-- Dilbert

Table of Contents
1. The PowerDNS dynamic nameserver..1

1.1. Function & design of PDNS...1
1.2. About this document...1
1.3. Release notes...1

1.3.1. 2.0 Release Candidate 2...1
1.3.2. 2.0 Release Candidate 1...2
1.3.3. 1.99.12 Prerelease...4
1.3.4. 1.99.11 Prerelease...5
1.3.5. 1.99.10 Prerelease...5
1.3.6. 1.99.9 Early Access Prerelease...6
1.3.7. 1.99.8 Early Access Prerelease...7
1.3.8. 1.99.7 Early Access Prerelease...9
1.3.9. 1.99.6 Early Access Prerelease...10
1.3.10. 1.99.5 Early Access Prerelease...11
1.3.11. 1.99.4 Early Access Prerelease...12
1.3.12. 1.99.3 Early Access Prerelease...13
1.3.13. 1.99.2 Early Access Prerelease...14
1.3.14. 1.99.1 Early Access Prerelease...15

1.4. Acknowledgements...16

2. Installing on Unix...17

2.1. Possible problems at this point..17
2.2. Testing your install..17

2.2.1. Typical errors..18
2.3. Running PDNS on unix...19

3. Installing on Microsoft Windows ...21

3.1. Configuring PDNS on Microsoft Windows..22
3.2. Running PDNS on Microsoft Windows..22

4. Configure database connectivity...24

4.1. Configuring MySQL...24
4.1.1. Common problems...26

5. Dynamic resolution using the PipeBackend..28

5.1. Deploying the PipeBackend with the BindBackend...28

6. Logging & Monitoring PDNS performance..29

6.1. Webserver..29
6.2. Via init.d commands...29
6.3. Operational logging using syslog..31

7. Security settings & considerations...33

7.1. Settings..33
7.1.1. Running as a less privileged identity..33
7.1.2. Jailing the process in a chroot..33

7.2. Considerations...33

iii

8. Virtual hosting..35

9. Performance related settings..36

9.1. PacketCache..36

10. Migrating to PDNS..37

10.1. Zone2sql..37

11. Recursion..39

11.1. Details...39

12. Master/Slave operation & replication..40

12.1. Native replication..40
12.2. Slave operation..40

12.2.1. Supermaster automatic provisioning of slaves...40
12.3. Master operation...41

13. Fancy records for seamless email and URL integration..42

14. Index of all settings..43

15. Index of all internal metrics..46

15.1. Counters & variables...46
15.1.1. Ring buffers..47

16. Supported record types and their storage...49

A. Backends in detail...51

A.1. PipeBackend protocol..51
A.1.1. Handshake...51
A.1.2. Questions...51
A.1.3. Answers...51
A.1.4. Sample perl backend..53

A.2. MySQL backend..54
A.2.1. Configuration settings..55
A.2.2. Notes..55

A.3. Generic MySQL backend...55
A.4. Generic PgSQL backend..55

A.4.1. Basic functionality...57
A.4.2. Fancy records...59
A.4.3. Settings and specifying queries...59
A.4.4. Native operation...60
A.4.5. Slave operation..60
A.4.6. Superslave operation..61
A.4.7. Master operation..61

A.5. Generic Oracle backend...61
A.6. DB2 backend..61
A.7. Bind zone file backend...62

A.7.1. Operation...63
A.7.2. Performance...64
A.7.3. Master/slave configuration...64

A.8. ODBC backend..64

iv

B. PDNS internals..66

B.1. Controlsocket..66
B.1.1. pdns_control...66

B.2. Guardian...66
B.3. Modules & Backends...66
B.4. How PDNS translates DNS queries into backend queries...67

C. Backend writers’ guide...69

C.1. Simple read-only native backends..69
C.1.1. A sample minimal backend..70
C.1.2. Interface definition...72

C.2. Reporting errors..74
C.3. Declaring and reading configuration details...75
C.4. Read/write slave-capable backends..76

C.4.1. Supermaster/Superslave capability..79
C.5. Read/write master-capable backends..79
C.6. HOWTO & Frequently Asked Questions...80

v

List of Tables
A-1. MySQL backend capabilities..54
A-2. Generic PgSQL backend capabilities..56
A-3. DB2 backend capabilities..61
A-4. Bind zone file backend capabilities...63
A-5. ODBC backend capabilities..64
C-1. DNSResourceRecord class..72
C-2. SOAData struct..??
C-3. DomainInfo struct..77

vi

Chapter 1. The PowerDNS dynamic nameserver

The PowerDNS daemon is a versatile nameserver which supports a large number of backends. These
backends can either beplain zonefilesor bemore dynamicin nature.

Prime examples of backends include relational databases, but also loadbalancing and failover algorithms.

The company is called PowerDNS BV, the nameserver daemon is called PDNS.

1.1. Function & design of PDNS

PDNS is an authoritative only nameserver. It will answer questions about domains it knows about, but
will not go out on the net to resolve queries about other domains. However, it can use arecursing
backendto provide that functionality.

When PDNS answers a question, it comes out of the database, and can be trusted as being authoritative.
There is no way to pollute the cache or to confuse the daemon.

PDNS has been designed to serve both the needs of small installations by being easy to setup, as well as
for serving very large query volumes on large numbers of domains.

Another prime goal issecurity. By the use of language features, the PDNS source code is very small (in
the order of 10.000 lines) which makes auditing easy. In the same way, library features have been used to
mitigate the risks of buffer overflows.

Finally, PDNS is able to give a lot ofstatisticson its operation which is both helpful in determining the
scalability of an installation as well as for spotting problems.

1.2. About this document

If you are reading this document from disk, you may want to check http://doc.powerdns.com for updates.
The PDF version is available on http://doc.powerdns.com/pdf, a text file is on
http://doc.powerdns.com/txt/ (http://doc.powerdns.com/txt).

1.3. Release notes

Before proceeding, you should check the release notes for your PDNS version, as specified in the name
of the distribution file.

1

Chapter 1. The PowerDNS dynamic nameserver

1.3.1. 2.0 Release Candidate 2

Mostly bugfixes, no really new features.

Developers: this version is compatible with 1.99.11 backends.

Bugs fixed:

• chroot() works again - 2.0rc1 silently refused to chroot. Thanks to Hub Dohmen for noticing this.

• setuid() and setgid() security features were silently not being performed in 2.0rc1. Thanks to Hub
Dohmen for noticing this.

• MX preferences over 255 now work as intended. Thanks to Jeff Crowe for noticing this.

• IPv6 clients can now also benefit from the recursing backend feature. Thanks to Andy Furnell for
proving beyond any doubt that this did not work.

• Extremely bogus code removed from DNS notification reception code - please test! Thanks to Jakub
Jermar for working with us in figuring out just how broken this was.

• AXFR code improved to handle more of the myriad different zonetransfer dialects available.
Specifically, interoperability with Bind 4 was improved, as well as Bind 8 in ’strict rfc conformance’
mode. Thanks again for Jakub Jermar for running many tests for us. If your transfers failed with
’Unknown type 14!!’ or words to that effect, this was it.

Features:

• Win32 version now has a zone2sql tool.

• Win32 version now has support for specifying how urgent messages should be before they go to the
NT event log.

Remaining issues:

• One persistent report of the default ’chroot=./’ configuration not working.

• One report of disable-axfr and allow-axfr-ips not working as intended.

• Support for relative paths in zones and in Bind configuration is not bug-for-bug compatible with bind
yet.

2

Chapter 1. The PowerDNS dynamic nameserver

1.3.2. 2.0 Release Candidate 1

The MacOS X release! A very experimental OS X 10.2 build has been added. Furthermore, the Windows
version is now in line with Unix with respect to capabilities. The ODBC backend now has the code to
function as both a master and a slave.

Developers: this version is compatible with 1.99.11 backends.

• Implemented native packet response parsing code, allowing Windows to perform AXFR and NS and
SOA queries.

• This is the first version for which we have added support for Darwin 6.0, which is part of the
forthcoming Mac OS X 10.2. Please note that although this version is marked RC1, that we have not
done extensive testing yet. Consider this a technology preview.

• The Darwin version has been developed on Mac OS X 10.2 (6C35). Other versions may or may not
work.

• Currently only the random, bind, mysql and pdns backends are included.

• The menu based installer script does not work, you will have to edit pathconfig by hand as outlined
in chapter 2.

• On Mac OS X Client, PDNS will fail to start because a system service is already bound to port 53.

This version is distributed as a compressed tar file. You should follow the generic UNIX installation
instructions.

Bugs fixed:

• Zone2sql PostgreSQL mode neglected to lowercase $ORIGIN. Thanks to Maikel Verheijen of Ladot
for spotting this.

• Zone2sql PostgreSQL mode neglected to remove a trailing dot from $ORIGIN if present. Thanks to
Thanks to Maikel Verheijen of Ladot for spotting this.

• Zonefile parser was not compatible with bind when $INCLUDING non-absolute filenames. Thanks to
Jeff Miller for working out how this should work.

• Bind configuration parser was not compatible with bind when including non-absolute filenames.
Thanks to Jeff Miller for working out how this should work.

• Documentation incorrectly listed the Bind backend as ’slave capable’. This is not yet true, now
labeled ’experimental’.

3

Chapter 1. The PowerDNS dynamic nameserver

Windows changes. We are indebted to Dimitry Andric who educated us in the ways of distributing
Windows software.

• pdns.conf is now read if available.

• Console version responds to ^c now.

• Default pdns.conf added to distribution

• Uninstaller missed several files, leaving remnants behind

• DLLs are now installed locally, with the pdns executable.

• pdns_control is now also available on Windows

• ODBC backend can now act as master and slave. Experimental.

• The example zone missed indexes and had other faults.

• A runtime DLL that is present on most windows systems (but not all!) was missing.

1.3.3. 1.99.12 Prerelease

The Windows release! SeeChapter 3. Beware, windows support is still very fresh and untested.
Feedback is very welcome.

Developers: this version is compatible with 1.99.11 backends.

• Windows 2000 codebase merge completed. This resulted in quite some changes on the Unix end of
things, so this may impact reliability

• ODBC backend added for Windows. SeeSection A.8.

• IBM DB2 Universal Database backend available for Linux. SeeSection A.6.

• Zone2sql now understands $INCLUDE. Thanks to Amaze Internet for nagging about this

• The SOA Mininum TTL now has a configurable default (soa-minimum-ttl)value to placate the
DENIC requirements.

• Added a limit on the simultaneous numbers of TCP connections to accept (max-tcp-connections).
Defaults to 10.

Bugs fixed:

• When operating in virtual hosting mode (SeeChapter 8), the additional init.d scripts would not
function correctly and interface with other pdns instances.

• PDNS neglected to conserve case on answers. So a query for WwW.PoWeRdNs.CoM would get an
answer listing the address of www.powerdns.com. While this did not confuse resolvers, it is better to

4

Chapter 1. The PowerDNS dynamic nameserver

conserve case. This has semantical concequences for all backends, which the documentation now
spells out.

• PostgreSQL backend was case sensitive and returned only answers in case an exact match was found.
The Generic PostgreSQL backend is now officially all lower case and zone2sql in PostgreSQL mode
enforces this. Documentation has been been updated to reflect the case change. Thanks to Maikel
Verheijen of Ladot for spotting this!

• Documentation bug - postgresql create/index statements created a duplicate index. If you’ve
previously copy pasted the commands and not noticed the error, executeCREATE INDEX
rec_name_index ON records(name)to remedy. Thanks to Jeff Miller for reporting this. This also
lead to depressingly slow ’ANY’ lookups for those of you doing benchmarks.

Features:

• pdns_control (seeSection B.1.1) now opens the local end of its socket in/tmp instead of next to the
remote socket (by default/var/run). This eases the way for allowing non-root access to
pdns_control. When running chrooted (seeChapter 7), the local socket again moves back to
/var/run .

• pdns_control now has a ’version’ command. SeeSection B.1.1.

1.3.4. 1.99.11 Prerelease

This release is important because it is the first release which is accompanied by an Open Source Backend
Development Kit, allowing external developers to write backends for PDNS. Furthermore, a few bugs
have been fixed:

• Lines with only whitespace in zone files confused PDNS (thanks Henk Wevers)

• PDNS did not properly parse TTLs with symbolic sufixes in zone files, ie 2H instead of 7200 (thanks
Henk Wevers)

1.3.5. 1.99.10 Prerelease

IMPORTANT: there has been a tiny license change involving free public webbased dns hosting, check
out the changes before deploying!

PDNS is now feature complete, or very nearly so. Besides adding features, a lot of ’fleshing out’ work is
done now. There is an important performance bug fix which may have lead to disappointing benchmarks
- so if you saw any of that, please try either this version or 1.99.8 which also does not have the bug.

5

Chapter 1. The PowerDNS dynamic nameserver

This version has been very stable for us on multiple hosts, as was 1.99.9.

PostgreSQL users should be aware that while 1.99.10 works with the schema as presented in earlier
versions, advanced features such as master or slave support will not work unless you create the new
’domains’ table as well.

Bugs fixed:

• Wildcard AAAA queries sometimes received an NXDOMAIN error where they should have gotten an
empty NO ERROR. Thanks to Jeroen Massar for spotting this on the .TK TLD!

• Do not disable the packetcache for ’recursion desired’ packets unless a recursor was configured.
Thanks to Greg Schueler for noticing this.

• A failing backend would not be reinstated. Thanks to ’Webspider’ for discovering this problem with
PostgreSQL connections that die after prolonged inactivity.

• Fixed loads of IPv6 transport problems. Thanks to Marco Davids and others for testing. Considered
ready for production now.

• Zone2sqlprinted a debugging statement on range $GENERATE commands. Thanks to Rene van
Valkenburg for spotting this.

Features:

• PDNS can now act as a master, sending out notifications in case of changes and allowing slaves to
AXFR. Big rewording of replication support, domains are now either ’native’, ’master’ or ’slave’. See
Chapter 12for lots of details.

• Zone2sqlin PostgreSQL mode now populates the ’domains’ table for easy master, slave or native
replication support.

• Ability to disable those annoying Windows DNS Dynamic Update messages from appearing in the
log. Seelog-failed-updates in Chapter 14.

• Ability to run on IPv6 transport only

• Logging can now happen under a ’facility’ so all PDNS messages appear in their own file. See
Section 6.3.

• Different OS releases of PDNS now get different install path defaults. Thanks to Mark Lastdrager for
nagging about this and to Nero Imhard and Frederique Rijsdijk for suggesting saner defaults.

• Infrastructure for ’also-notify’ statements added.

1.3.6. 1.99.9 Early Access Prerelease

This is again a feature and an infrastructure release. We are nearly feature complete and will soon start
work on the backends to make sure that they are all master, slave and ’superslave’ capable.

6

Chapter 1. The PowerDNS dynamic nameserver

Bugs fixed:

• PDNS sometimes sent out duplicate replies for packets passed to the recursing backend. Mostly a
problem on SMP systems. Thanks to Mike Benoit for noticing this.

• Out-of-bailiwick CNAMES (ie, a CNAME to a domain not in PDNS) caused a ’ServFail’ packet in
1.99.8, indicating failure, leading to hosts not resolving. Thanks to Martin Gillstrom for noticing this.

• Zone2sql balked at zones editted under operating sytems terminating files with ^Z (Windows).
Thanks Brian Willcott for reporting this.

• PostgreSQL backend logged the password used to connect. Now only does so in case of failure to
connect. Thanks to ’Webspider’ for noticing this.

• Debian unstable distribution wrongly depended on home compiled PostgreSQL libraries. Thanks to
Konrad Wojas for noticing this.

Features:

• When operating as a slave, AAAA records are now supported in the zone. They were already
supported in master zones.

• IPv6 transport support - PDNS can now listen on an IPv6 socket using thelocal-ipv6 setting.

• Very silly randombackend added which appears in the documentation as a sample backend. See
Appendix C.

• When transferring a slave zone from a master, out of zone data is now rejected. Malicious operators
might try to insert bad records otherwise.

• ’Supermaster’ support for automatic provisioning from masters. SeeSection 12.2.1.

• Recursing backend can now live on a non-standard (!=53) port. SeeChapter 11.

• Slave zone retrieval is now queued instead of immediate, which scales better and is more resilient to
temporary failures.

• max-queue-lengthparameter. If this many packets are queued for database attention, consider the
situation hopeless and respawn.

Internal:

• SOA records are now ’special’ and each backend can optionally generate them in special ways.
PostgreSQL backend does so when operating as a slave.

• Writing backends is now a lot easier. SeeAppendix C.

• Added Bindbackend to internal regression tests, confirming that it is compliant.

7

Chapter 1. The PowerDNS dynamic nameserver

1.3.7. 1.99.8 Early Access Prerelease

A lot of infrastructure work gearing up to 2.0. Some stability bugs fixed and a lot of new features.

Bugs fixed:

• Bindbackend was overly complex and crashed on some systems on startup. Simplified launch code.

• SOA fields were not always properly filled in, causing default values to go out on the wire

• Obscure bug triggered by malicious packets (we know who you are) in SOA finding code fixed.

• Magic serial number calculation contained a double free leading to instability.

• Standards violation, questions for domains for which PDNS was unauthoritative now get a
SERVFAIL answer. Thanks to the IETF Namedroppers list for helping out with this.

• Slowly launching backends were being relaunched at a great rate when queries were coming in while
launching backends.

• MySQL-on-unix-domain-socket on SMP systems was overwhelmed by the quick connection rate on
launch, inserted a small 50ms delay.

• Some SMP problems appear to be compiler related. Shifted to GCC 3.0.4 for Linux.

• Ran ispell on documentation.

Feature enhancements:

• Recursing backend. SeeChapter 11. Allows recursive and authoritative DNS on the same IP address.

• NAPTR support, which is especially useful for the ENUM/E.164 community.

• Zone transfers can now be allowed pernetmask instead of only per IP address.

• Preliminary support for slave operation included. Only for the adventurous right now! SeeSection
12.2

• All record types now documented, seeChapter 16.

1.3.7.1. Known bugs

Wildcard CNAMES do not work as they do with bind.

Recursion sometimes sends out duplicate packets (fixed in 1.99.9 snapshots)

Some stability issues which are caught by the guardian

8

Chapter 1. The PowerDNS dynamic nameserver

1.3.7.2. Missing features

Features present in this document, but disabled or withheld from the current release:

• gmysqlbackend, oraclebackend

The Oraclebackend is available on request and will most likely need to be tailored to your installation.

1.3.8. 1.99.7 Early Access Prerelease

Named.conf parsing got a lot of work and many more bind configurations can now be parsed.
Furthermore, error reporting was improved. Stability is looking good.

Bugs fixed:

• Bind parser got confused by filenames with underscores and colons.

• Bind parser got confused by spaces in quoted names

• FreeBSD version now stops and starts when instructed to do so.

• Wildcards were off by default, which violates standards. Now on by default.

• --oracle was broken in zone2sql

Feature enhancements:

• Line number counting goes on as it should when including files in named.conf

• Added --no-config to enable users to start the pdns daemon without parsing the configuration file.

• zone2sql now has --bare for unformatted output which can be used to generate insert statements for
different database layouts

• zone2sql now has --gpgsql, which is an alias for --mysql, to output in a format useful for the default
Generic PgSQL backend

• zone2sql is now documented.

1.3.8.1. Known bugs

Wildcard CNAMES do not work as they do with bind.

9

Chapter 1. The PowerDNS dynamic nameserver

1.3.8.2. Missing features

Features present in this document, but disabled or withheld from the current release:

• gmysqlbackend, oraclebackend

Some of these features will be present in newer releases.

1.3.9. 1.99.6 Early Access Prerelease

This version is now running on dns-eu1.powerdns.net and working very well for us. But please remain
cautious before deploying!

Bugs fixed:

• Webserver neglected to show log messages

• TCP question/answer miscounted multiple questions over one socket. Fixed misnaming of counter

• Packetcache now detects clock skew and times out entries

• named.conf parser now reports errors with line number and offending token

• Filenames in named.conf can now contain :

Feature enhancements:

• The webserver now by default does not print out configuration statements, which might contain
database backends. Usewebserver-print-argumentsto restore the old behaviour.

• Generic PostgreSQL backend is now included. Still rather beta.

1.3.9.1. Known bugs

FreeBSD version does not stop when requested to do so.

Wildcard CNAMES do not work as they do with bind.

1.3.9.2. Missing features

Features present in this document, but disabled or withheld from the current release:

• gmysqlbackend, oraclebackend

10

Chapter 1. The PowerDNS dynamic nameserver

Some of these features will be present in newer releases.

1.3.10. 1.99.5 Early Access Prerelease

The main focus of this release is stability and TCP improvements. This is the first release
PowerDNS-the-company actually considers for running on its production servers!

Major bugs fixed:

• Zone2sql received a floating point division by zero error on named.confs with less than 100 domains.

• Huffman encoder failed without specific error on illegal characters in a domain

• Fixed huge memory leaks in TCP code.

• Removed further file descriptor leaks in guardian respawning code

• Pipebackend was too chatty.

• pdns_server neglected to close fds 0, 1 & 2 when daemonizing

Feature enhancements:

• bindbackend can be instructed not to check the ctime of a zone by specifyingbind-check-interval=0,
which is also the new default.

• pdns_server --list-moduleslists all available modules.

Performance enhancements:

• TCP code now only creates a new database connection for AXFR.

• TCP connections timeout rather quickly now, leading to less load on the server.

1.3.10.1. Known bugs

FreeBSD version does not stop when requested to do so.

Wildcard CNAMES do not work as they do with bind.

11

Chapter 1. The PowerDNS dynamic nameserver

1.3.10.2. Missing features

Features present in this document, but disabled or withheld from the current release:

• gmysqlbackend, oraclebackend, gpgsqlbackend

Some of these features will be present in newer releases.

1.3.11. 1.99.4 Early Access Prerelease

A lot of new named.confs can now be parsed, zone2sql & bindbackend have gained features and stability.

Major bugs fixed:

• Label compression was not always enabled, leading to large reply packets sometimes.

• Database errors on TCP server lead to a nameserver reload by the guardian.

• MySQL backend neglected to close its connection properly.

• BindParser miss parsed some IP addresses and netmasks.

• Truncated answers were also truncated on the packetcache, leading to truncated TCP answers.

Feature enhancements:

• Zone2sql and the bindbackend now understand the Bind $GENERATE{} syntax.

• Zone2sql can optionally gloss over non-existing zones with--on-error-resume-next.

• Zone2sql and the bindbackend now properly expand @ also on the right hand side of records.

• Zone2sql now sets a default TTL.

• DNS UPDATEs and NOTIFYs are now logged properly and sent the right responses.

Performance enhancements:

• ’Fancy records’ are no longer queried for on ANY queries - this is a big speedup.

1.3.11.1. Known bugs

FreeBSD version does not stop when requested to do so.

Zone2sql refuses named.confs with less than 100 domains.

12

Chapter 1. The PowerDNS dynamic nameserver

Wildcard CNAMES do not work as they do with bind.

1.3.11.2. Missing features

Features present in this document, but disabled or withheld from the current release:

• gmysqlbackend, oraclebackend, gpgsqlbackend

Some of these features will be present in newer releases.

1.3.12. 1.99.3 Early Access Prerelease

The big news in this release is the BindBackend which is now capable of parsing many more named.conf
Bind configurations. Furthermore, PDNS has successfully parsed very large named.confs with large
numbers of small domains, as well as small numbers of large domains (TLD).

Zone transfers are now also much improved.

Major bugs fixed:

• zone2sql leaked file descriptors on each domain, used wrong Bison recursion leading to parser stack
overflows. This limited the amount of domains that could be parsed to 1024.

• zone2sql can now read all known zonefiles, with the exception of those containing $GENERATE

• Guardian relaunching a child lost two file descriptors

• Don’t die on a connection reset by peer during zone transfer.

• Webserver does not crash anymore on ringbuffer resize

Feature enhancements:

• AXFR can now be disabled, and re-enabled per IP address

• --help accepts a parameter, will then show only help items with that prefix.

• zone2sql now accepts a --zone-name parameter

• BindBackend maturing - 9500 zones parsed in 3.5 seconds. No longer case sensitive.

Performance enhancements:

• Implemented RFC-breaking AXFR format (which is the industry standard). Zone transfers now zoom
along at wirespeed (many megabits/s).

13

Chapter 1. The PowerDNS dynamic nameserver

1.3.12.1. Known bugs

FreeBSD version does not stop when requested to do so.

BindBackend cannot parse zones with $GENERATE statements.

1.3.12.2. Missing features

Features present in this document, but disabled or withheld from the current release:

• gmysqlbackend, oraclebackend, gpgsqlbackend

Some of these features will be present in newer releases.

1.3.13. 1.99.2 Early Access Prerelease

Major bugs fixed:

• Database backend reload does not hang the daemon anymore

• Buffer overrun in local socket address initialisation may have caused binding problems

• setuid changed the uid to the gid of the selected user

• zone2sql doesn’t coredump on invocation anymore. Fixed lots of small issues.

• Don’t parse configuration file when creating configuration file. This was a problem with reinstalling.

Performance improvements:

• removed a lot of unnecessary gettimeofday calls

• removed needless select(2) call in case of listening on only one address

• removed 3 useless syscalls in the fast path

Having said that, more work may need to be done. Testing on a 486 saw packet rates in a simple setup
(question/wait/answer/question..) improve from 200 queries/second to over 400.

Usability improvements:

• Fixed error checking in init.d script (show, mrtg)

• Added ’uptime’ to the mrtg output

• removed further GNUisms from installer and init.d scripts for use on FreeBSD

• Debian package and apt repository, thanks to Wichert Akkerman.

• FreeBSD /usr/ports, thanks to Peter van Dijk (in progress).

14

Chapter 1. The PowerDNS dynamic nameserver

Stability may be an issue as well as performance. This version has a tendency to log a bit too much
which slows the nameserver down a lot.

1.3.13.1. Known bugs

Decreasing a ringbuffer on the website is a sure way to crash the daemon. Zone2sql, while improved,
still has problems with a zone in the following format:

name IN A 1.2.3.4
IN A 1.2.3.5

To fix, add ’name’ to the second line.

Zone2sql does not close filedescriptors.

FreeBSD version does not stop when requested via the init.d script.

1.3.13.2. Missing features

Features present in this document, but disabled or withheld from the current release:

• gmysqlbackend, oraclebackend, gpgsqlbackend

• fully functioning bindbackend - will try to parse named.conf, but probably fail

Some of these features will be present in newer releases.

1.3.14. 1.99.1 Early Access Prerelease

This is the first public release of what is going to become PDNS 2.0. As such, it is not of production
quality. Even PowerDNS-the-company does not run this yet.

Stability may be an issue as well as performance. This version has a tendency to log a bit too much
which slows the nameserver down a lot.

1.3.14.1. Known bugs

Decreasing a ringbuffer on the website is a sure way to crash the daemon. Zone2sql is very buggy.

15

Chapter 1. The PowerDNS dynamic nameserver

1.3.14.2. Missing features

Features present in this document, but disabled or withheld from the current release:

• gmysqlbackend, oraclebackend, gpgsqlbackend

• fully functioning bindbackend - will not parse configuration files

Some of these features will be present in newer releases.

1.4. Acknowledgements

PowerDNS is grateful for the help of the following people or institutions:

• Dave Aaldering

• Wichert Akkerman

• Antony Antony

• Mike Benoit (NetNation Communication Inc.)

• Peter van Dijk

• Koos van den Hout

• Andre Koopal

• Eric Veldhuyzen

• Paul Wouters

• Thomas Wouters

• IETF Namedroppers mailinglist

Thanks!

(these people don’t share the blame for any errors or mistakes in powerdns - those are all ours)

16

Chapter 2. Installing on Unix

After unpacking the PDNS distribution the files need to be moved to appropriate locations.

PDNS can be installed in a variety of directories, which can easily be customised to local policy. Two
ways are available - manual and via a menu.

The menu is invoked by executing the ’./choosepaths’ script and answering the questions. The manual
way involves editing the ’pathconfig’ file. The choice is up to you.

After deciding paths, change to root and execute the ’installer’ script. This will:

• Configure the PowerDNS binary so it knows where the configuration directory is

• If necessary, create the configuration directory

• Write sample configuration file (not overwriting existing one)

• Write a SysV-style init.d script in the configured directory

• Move binaries and libraries to the configured places

2.1. Possible problems at this point

At this point some things may have gone wrong. Typical errors include:

error while loading shared libraries: libstdc++.so.x: cannot open shared object file: No such file or directory

Errors looking like this indicate a mismatch between your PDNS distribution and your Unix
operating system. Download the static PDNS distribution for your operating system and try again.
Please contact <pdns@powerdns.com > if this is impractical.

2.2. Testing your install

After installing, it is a good idea to test the basic functionality of the software before configuring
database backends. For this purpose, PowerDNS contains the ’bindbackend’ which has a domain built in
example.com, which is officially reserved for testing. To test, editpdns.conf and add the following if
not already present:

launch=bind
bind-example-zones

17

Chapter 2. Installing on Unix

This configures powerdns to ’launch’ the bindbackend, and enable the example zones. To fire up PDNS
in testing mode, execute:/etc/init.d/pdns monitor, where you may have to substitute the location of
your SysV init.d location you specified earlier. In monitor mode, the pdns process runs in the foreground
and is very verbose, which is perfect for testing your install. If everything went all right, you can query
the example.com domain like this:

host www.example.com 127.0.0.1

www.example.com should now have IP address 1.2.3.4. Thehostcommand can usually be found in the
dnsutils package of your operating system. Alternate command is:dig www.example.com A @127.0.0.1
or evennslookup www.example.com 127.0.0.1, although nslookup is not advised for DNS diagnostics.

• example.com SOA record

• example.com NS record pointing to ns1.example.com

• example.com NS record pointing to ns2.example.com

• example.com MX record pointing to mail.example.com

• example.com MX record pointing to mail1.example.com

• mail.example.com A record pointing to 4.3.2.1

• mail1.example.com A record pointing to 5.4.3.2

• ns1.example.com A record pointing to 4.3.2.1

• ns2.example.com A record pointing to 5.4.3.2

• host-0 to host-9999.example.com A record pointing to 2.3.4.5

When satisfied that basic functionality is there, typeQUIT to exit the monitor mode. The adventurous
may also typeSHOW * to see some internal statistics. In case of problems, you will want to read the
following section.

2.2.1. Typical errors

At this point some things may have gone wrong. Typical errors include:

binding to UDP socket: Address already in use

This means that another nameserver is listening on port 53 already. You can resolve this problem
by determining if it is safe to shutdown the nameserver already present, and doing so. If uncertain, it
is also possible to run PDNS on another port. To do so, addlocal-port=5300to pdns.conf , and try
again. This however implies that you can only test your nameserver as clients expect the nameserver
to live on port 53.

binding to UDP socket: Permission denied

You must be superuser in order to be able to bind to port 53. If this is not a possibility, it is also
possible to run PDNS on another port. To do so, addlocal-port=5300to pdns.conf , and try again.

18

Chapter 2. Installing on Unix

This however implies that you can only test your nameserver as clients expect the nameserver to
live on port 53.

Unable to launch, no backends configured for querying

PDNS did not find thelaunch=bind instruction in pdns.conf.

2.3. Running PDNS on unix

PDNS is normally controlled via a SysV-style init.d script, often located in/etc/init.d or
/etc/rc.d/init.d . This script accepts the following commands:

monitor

Monitor is a special way to view the daemon. It executes PDNS in the foreground with a lot of
logging turned on, which helps in determining startup problems. Besides running in the foreground,
the raw PDNS control socket is made available. All external communication with the daemon is
normally sent over this socket. While useful, the control console is not an officially supported
feature. Commands which work are:QUIT , SHOW * , SHOW varname, RPING.

start

Start PDNS in the background. Launches the daemon but makes no special effort to determine
success, as making database connections may take a while. Usestatusto query success. You can
safely runstart many times, it will not start additional PDNS instances.

restart

Restarts PDNS if it was running, starts it otherwise.

status

Query PDNS for status. This can be used to figure out if a launch was successful. The status found
is prefixed by the PID of the main PDNS process.

stop

Requests that PDNS stop. Again, does not confirm success. Success can be ascertained with the
statuscommand.

dump

Dumps a lot of statistics of a running PDNS daemon. It is also possible to single out specific
variable by using theshowcommand.

show variable

Show a single statistic, as present in the output of thedump.

19

Chapter 2. Installing on Unix

mrtg

See the performance monitoringChapter 6.

20

Chapter 3. Installing on Microsoft Windows

Note: PowerDNS support for Windows is, as of 1.99.12, very recent and therefore quite ’beta’. For
reliability, we currently advise the use of the Unix versions. Furthermore there is no support for
master or slave operation in the ODBC backend, which is the only one provided currently. This will be
fixed soon.

As of 1.99.12, PowerDNS supports Windows natively. PDNS can act as an NT service and works with
any ODBC drivers you may have.

To install PowerDNS for Windows you should check if your PC meets the following requirements:

• A PC running Microsoft NT (with a recent servicepack and at least mdac 2.5), 2000 or XP.

• An ODBC source containing valid zone information (an example MS Access database is supplied in
the form ofpowerdns.mdb).

If your system meets these requirements, download the installer from http://www.powerdns.com/pdns/.
After downloading the file begin the installation procedure by startingpowerdns-VERSION.exe .

After installing the software you should create a valid ODBC source. To do this you have open the
ODBC sources dialog:Start->Settings->Control Panel->Administrative Tools->Data

Sources (ODBC) .

We’ll use the example zone database that is included in the installation to explain how to create a source.

When you are in the ODBC sources dialog you activate theSystem DSN tab.

Note: It is important to create a System DSN instead of an User DNS, otherwise the ODBC backend
cannot function.

PressAdd... , then you have to select a driver.

SelectMicrosoft Access Driver (*.mdb) .

21

Chapter 3. Installing on Microsoft Windows

UsePowerDNSas the DSN name, you can leave the description empty.

Then pressSelect... to select the database (ie.C:\Program Files\PowerDNS\powerdns.mdb).

PressOk and you should be done.

For more information, seeSection A.8.

3.1. Configuring PDNS on Microsoft Windows

You can specify program parameters in thepdns.conf file which should be located in pdns directory
(ie. C:\Program Files\PowerDNS\).

To see a list of available parameters you can runpdns.exe --help .

Note: A default configuration file has been supplied with the installation.

3.2. Running PDNS on Microsoft Windows

If you installed pdns on Windows NT, 2000 or XP you can run pdns as a service.

This is how to do it: Go to services (Start->Settings->Control Panel->Administrative

Tools->Services) and locatePDNS(you should have registered the program as a NT service during
the installation).

Double-click onPDNSand push the start button. You should now see a progress bar that gets to the end
and see the status change to ’Started’.

This is the same as starting pdns like this:pdns.exe --ntservice

If you haven’t registered pdns as a service during the installation you can do so from the commandline
by starting pdns like this:pdns.exe --register-service

You can run pdns as a standard console program by using a command prompt orStart->Run... This
way you can specify command-line parameters (see the documentation for commandline options).

22

Chapter 3. Installing on Microsoft Windows

If you chose to add a PowerDNS menu to the start menu during the installation you can start pdns using
the pdns shortcut in that menu.

23

Chapter 4. Configure database connectivity

The default PDNS distribution comes with a simple MySQL backend built in, which we will now use for
demonstrating database connectivity. This backend is called ’mysql’, and needs to be configured in
pdns.conf . Add the following lines, adjusted for your local setup:

launch=mysql
mysql-host=127.0.0.1
mysql-user=root
mysql-dbname=pdnstest

Remove any earlierlaunch statements. Also remove thebind-example-zonesstatement as thebind
module is no longer launched.

WARNING! Make sure that you can actually resolve the hostname of your database without accessing
the database! It is advised to supply an IP address here to prevent chicken/egg problems!

Now start PDNS using the monitor command:

/etc/init.d/pdns monitor
(...)
15:31:30 PowerDNS 1.99.0 (Mar 12 2002, 15:00:28) starting up
15:31:30 About to create 3 backend threads
15:31:30 [MySQLbackend] Failed to connect to database: Error: Unknown database ’pdnstest’
15:31:30 [MySQLbackend] Failed to connect to database: Error: Unknown database ’pdnstest’
15:31:30 [MySQLbackend] Failed to connect to database: Error: Unknown database ’pdnstest’

This is as to be expected - we did not yet add anything to MySQL for PDNS to read from. At this point
you may also see other errors which indicate that PDNS either could not find your MySQL server or was
unable to connect to it. Fix these before proceeding.

General MySQL knowledge is assumed in this chapter, please do not interpret these commands as DBA
advice!

4.1. Configuring MySQL

Connect to MySQL as a user with sufficient privileges and issue the following commands:

mysql
mysql> CREATE DATABASE pdnstest;
mysql> use pdnstest;

mysql> CREATE TABLE records (
id int(11) NOT NULL auto_increment,

24

Chapter 4. Configure database connectivity

domain_id int(11) default NULL,
name varchar(255) default NULL,
type varchar(6) default NULL,
content varchar(255) default NULL,
ttl int(11) default NULL,
prio int(11) default NULL,
change_date int(11) default NULL,
PRIMARY KEY (id),
KEY name_index(name),
KEY nametype_index(name,type),
KEY domainid_index(domain_id)
);

Now we have a database and an empty table. PDNS should now be able to launch in monitor mode and
display no errors:

/etc/init.d/pdns monitor
(...)
15:31:30 PowerDNS 1.99.0 (Mar 12 2002, 15:00:28) starting up
15:31:30 About to create 3 backend threads
15:39:55 [MySQLbackend] MySQL connection succeeded
15:39:55 [MySQLbackend] MySQL connection succeeded
15:39:55 [MySQLbackend] MySQL connection succeeded

A sample query sent to the database should now return quickly without data:

$ host www.test.com 127.0.0.1
www.test.com A record currently not present at localhost

And indeed, the control console now shows:

Mar 12 15:41:12 We’re not authoritative for ’www.test.com’, sending unauth normal response

Now we need to add some records to our database:

mysql pdnstest
mysql>
INSERT INTO records (domain_id, name, content, type,ttl,prio)
VALUES (1,’test.com’,’localhost ahu@ds9a.nl 1’,’SOA’,86400,NULL);
INSERT INTO records (domain_id, name, content, type,ttl,prio)
VALUES (1,’test.com’,’dns-us1.powerdns.net’,’NS’,86400,NULL);
INSERT INTO records (domain_id, name, content, type,ttl,prio)
VALUES (1,’test.com’,’dns-eu1.powerdns.net’,’NS’,86400,NULL);
INSERT INTO records (domain_id, name, content, type,ttl,prio)
VALUES (1,’www.test.com’,’199.198.197.196’,’A’,120,NULL);
INSERT INTO records (domain_id, name, content, type,ttl,prio)
VALUES (1,’mail.test.com’,’195.194.193.192’,’A’,120,NULL);
INSERT INTO records (domain_id, name, content, type,ttl,prio)
VALUES (1,’localhost.test.com’,’127.0.0.1’,’A’,120,NULL);
INSERT INTO records (domain_id, name, content, type,ttl,prio)
VALUES (1,’test.com’,’mail.test.com’,’MX’,120,25);

If we now requery our database,www.test.comshould be present:

25

Chapter 4. Configure database connectivity

$ host www.test.com 127.0.0.1
www.test.com A 199.198.197.196

$ host -v -t mx test.com 127.0.0.1
Address: 127.0.0.1
Aliases: localhost

Query about test.com for record types MX
Trying test.com ...
Query done, 1 answer, authoritative status: no error
test.com 120 IN MX 25 mail.test.com
Additional information:
mail.test.com 120 IN A 195.194.193.192

To confirm what happened, issue the commandSHOW * to the control console:

% show *
corrupt-packets=0,latency=0,packetcache-hit=2,packetcache-miss=5,packetcache-size=0,
qsize-a=0,qsize-q=0,servfail-packets=0,tcp-answers=0,tcp-queries=0,
timedout-packets=0,udp-answers=7,udp-queries=7,
%

The actual numbers will vary somewhat. Now enterQUIT and start PDNS as a regular daemon, and
check launch status:

/etc/init.d/pdns start
pdns: started
/etc/init.d/pdns status
pdns: 8239: Child running
/etc/init.d/pdns dump
pdns: corrupt-packets=0,latency=0,packetcache-hit=0,packetcache-miss=0,
packetcache-size=0,qsize-a=0,qsize-q=0,servfail-packets=0,tcp-answers=0,
tcp-queries=0,timedout-packets=0,udp-answers=0,udp-queries=0,

You now have a working database driven nameserver! To convert other zones already present, use the
zone2sqldescribed in Appendix A.

4.1.1. Common problems

Most problems involve PDNS not being able to connect to the database.

Can’t connect to local MySQL server through socket ’/tmp/mysql.sock’ (2)

Your MySQL installation is probably defaulting to another location for its socket. Can be resolved
by figuring out this location (often/var/run/mysqld.sock), and specifying it in the
configuration file with themysql-socketparameter.

Another solution is to not connect to the socket, but to 127.0.0.1, which can be achieved by
specifyingmysql-host=127.0.0.1.

26

Chapter 4. Configure database connectivity

Host ’x.y.z.w’ is not allowed to connect to this MySQL server

These errors are generic MySQL errors. Solve them by trying to connect to your MySQL database
with the MySQL console utilitymysql with the parameters specified to PDNS. Consult the MySQL
documentation.

27

Chapter 5. Dynamic resolution using the
PipeBackend

Also included in the PDNS distribution is the PipeBackend. The PipeBackend is primarily meant for
allowing rapid development of new backends without tight integration with PowerDNS. It allows
end-users to write PDNS backends in any language. A perl sample is provided. The PipeBackend is also
very well suited for dynamic resolution of queries. Example applications include DNS based
loadbalancing, geo-direction, DNS based failover with low TTLs.

5.1. Deploying the PipeBackend with the BindBackend

Included with the PDNS distribution is the example.pl backend which has knowledge of the
example.com zone, just like the BindBackend. To install both, add the following to yourpdns.conf :

launch=pipe,bind
bind-example-zones
pipe-command=location/of/backend.pl

Please adjust thepipe-commandstatement to the location of the unpacked PDNS distribution. Now
launch PDNS in monitor mode, and perform some queries. Note the difference with the earlier
experiment where only the BindBackend was loaded. The PipeBackend is launched first and thus gets
queried first. The sample backend.pl script knows about:

• webserver.example.com A records pointing to 1.2.3.4, 1.2.3.5, 1.2.3.6

• www.example.com CNAME pointing to webserver.example.com

• MBOXFW (mailbox forward) records pointing to powerdns@example.com. See the smtpredir
documentation for information about MBOXFW.

For more information about how to write exciting backends with the PipeBackend, see Appendix A.

28

Chapter 6. Logging & Monitoring PDNS
performance

In a production environment, you will want to be able to monitor PDNS performance. For this purpose,
currently two methods are available, the webserver and the init.ddump, showandmrtg , commands.
Furthermore, PDNS can perform a configurable amount of operational logging. This chapter also
explains how to configure syslog for best results.

6.1. Webserver

To launch the internal webserver, add awebserverstatement to the pdns.conf. This will instruct the
PDNS daemon to start a webserver on localhost at port 8081, without password protection. Only local
users (on the same host) will be able to access the webserver by default. The webserver lists a lot of
information about the PDNS process, including frequent queries, frequently failing queries, lists of
remote hosts sending queries, hosts sending corrupt queries etc. The webserver does not allow remote
management of the daemon. The following nameserver related configuration items are available:

webserver

If set to anything but ’no’, a webserver is launched.

webserver-address

Address to bind the webserver to. Defaults to 127.0.0.1, which implies that only the local computer
is able to connect to the nameserver! To allow remote hosts to connect, change to 0.0.0.0 or the
physical IP address of your nameserver.

webserver-password

If set, viewers will have to enter this plaintext password in order to gain access to the statistics.

webserver-port

Port to bind the webserver to. Defaults to 8081.

6.2. Via init.d commands

As mentioned before, the init.d commandsdump, showandmrtg fetch data from a running PDNS
process. Especiallymrtg is powerful - it outputs data in a format that is ready for processing by the
MRTG graphing tool.

29

Chapter 6. Logging & Monitoring PDNS performance

MRTG can make insightful graphics on the performance of your nameserver, enabling the operator to
easily spot trends. MRTG can be found on http://people.ee.ethz.ch/~oetiker/webtools/mrtg/mrtg.html
(http://people.ee.ethz.ch/~oetiker/webtools/mrtg/mrtg.html)

A sample mrtg.conf:

Interval: 5
WorkDir: /var/www/mrtg
WriteExpires: yes
Options[_]: growright,nopercent
XSize[_]: 600

#---

Target[udp-queries]: ‘/etc/init.d/pdns mrtg udp-queries udp-answers‘
Options[udp-queries]: growright,nopercent,perminute
MaxBytes[udp-queries]: 600000
AbsMax[udp-queries]: 600000
Title[udp-queries]: Queries per minute
PageTop[udp-queries]: <H2>Queries per minute </H2 >

WithPeak[udp-queries]: ymwd
YLegend[udp-queries]: queries/minute
ShortLegend[udp-queries]: q/m
LegendI[udp-queries]: udp-questions
LegendO[udp-queries]: udp-answers

Target[perc-failed]: ‘/etc/init.d/pdns mrtg udp-queries udp-answers‘
Options[perc-failed]: growright,dorelpercent,perminute
MaxBytes[perc-failed]: 600000
AbsMax[perc-failed]: 600000
Title[perc-failed]: Queries per minute, with percentage success
PageTop[perc-failed]: <H2>Queries per minute, with percentage success </H2 >

WithPeak[perc-failed]: ymwd
YLegend[perc-failed]: queries/minute
ShortLegend[perc-failed]: q/m
LegendI[perc-failed]: udp-questions
LegendO[perc-failed]: udp-answers

Target[packetcache-rate]: ‘/etc/init.d/pdns mrtg packetcache-hit udp-queries‘
Options[packetcache-rate]: growright,dorelpercent,perminute
Title[packetcache-rate]: packetcache hitrate
MaxBytes[packetcache-rate]: 600000
AbsMax[packetcache-rate]: 600000
PageTop[packetcache-rate]: <H2>packetcache hitrate </H2 >

WithPeak[packetcache-rate]: ymwd
YLegend[packetcache-rate]: queries/minute
ShortLegend[packetcache-rate]: q/m
LegendO[packetcache-rate]: total
LegendI[packetcache-rate]: hit

30

Chapter 6. Logging & Monitoring PDNS performance

Target[packetcache-missrate]: ‘/etc/init.d/pdns mrtg packetcache-miss udp-queries‘
Options[packetcache-missrate]: growright,dorelpercent,perminute
Title[packetcache-missrate]: packetcache MISSrate
MaxBytes[packetcache-missrate]: 600000
AbsMax[packetcache-missrate]: 600000
PageTop[packetcache-missrate]: <H2>packetcache MISSrate </H2 >

WithPeak[packetcache-missrate]: ymwd
YLegend[packetcache-missrate]: queries/minute
ShortLegend[packetcache-missrate]: q/m
LegendO[packetcache-missrate]: total
LegendI[packetcache-missrate]: MISS

Target[latency]: ‘/etc/init.d/pdns mrtg latency‘
Options[latency]: growright,nopercent,gauge
MaxBytes[latency]: 600000
AbsMax[latency]: 600000
Title[latency]: Query/answer latency
PageTop[latency]: <H2>Query/answer latency </H2 >

WithPeak[latency]: ymwd
YLegend[latency]: usec
ShortLegend[latency]: usec
LegendO[latency]: latency
LegendI[latency]: latency

Target[recursing]: ‘/etc/init.d/pdns mrtg recursing-questions recursing-answers‘
Options[recursing]: growright,nopercent,gauge
MaxBytes[recursing]: 600000
AbsMax[recursing]: 600000
Title[recursing]: Recursive questions/answers
PageTop[recursing]: <H2>Recursing questions/answers </H2 >

WithPeak[recursing]: ymwd
YLegend[recursing]: queries/minute
ShortLegend[recursing]: q/m
LegendO[recursing]: recursing-questions
LegendI[recursing]: recursing-answers

6.3. Operational logging using syslog

(logging-facility is available from 1.99.10 and onwards)

This chapter assumes familiarity with syslog, the unix logging device. PDNS logs messages with
different levels. The more urgent the message, the lower the ’priority’. By default, PDNS will only log
messages with an urgency of 3 or lower, but this can be changed using theloglevelsetting in the
configuration file. Setting it to 0 will eliminate all logging, 9 will log everything.

31

Chapter 6. Logging & Monitoring PDNS performance

By default, logging is performed under the ’DAEMON’ facility which is shared with lots of other
programs. If you regard nameserving as important, you may want to have it under a dedicated facility so
PDNS can log to its own files, and not clutter generic files.

For this purpose, syslog knows about ’local’ facilities, numbered from LOCAL0 to LOCAL7. To move
PDNS logging to LOCAL0, addlogging-facility=0 to your configuration.

Furthermore, you may want to have separate files for the differing prioties - preventing lower priority
messages from obscuring important ones.

A sample syslog.conf might be:

local0.info -/var/log/pdns.info
local0.warn -/var/log/pdns.warn
local0.err /var/log/pdns.err

Where local0.err would store the really important messages. For performance and diskspace reasons, it is
advised to audit your syslog.conf for statements also logging PDNS activities. Many syslog.confs have a
’*.*’ statement to /var/log/syslog, which you may want to remove.

For performance reasons, be especially certain that no large amounts of synchronous logging take place.
Under Linux, this is indicated by filenames not starting with a ’-’ - indicating a synchronous log, which
hurts performance.

32

Chapter 7. Security settings & considerations

7.1. Settings

PDNS has several options to easily allow it to run more securely. Most notable are thechroot, setuidand
setgidoptions which can be specified.

7.1.1. Running as a less privileged identity

By specifyingsetuidandsetgid, PDNS changes to this identity shortly after binding to the privileged
DNS ports. These options are highly recommended. It is suggested that a separate identity is created for
PDNS as the user ’nobody’ is in fact quite powerful on most systems.

Both these parameters can be specified either numerically or as real names. You should set these
parameters immediately if they are not set!

7.1.2. Jailing the process in a chroot

Thechroot option secures PDNS to its own directory so that even if it should become compromised and
under control of external influences, it will have a hard time affecting the rest of the system.

Even though this will hamper hackers a lot, chroot jails have been known to be broken.

When chrooting PDNS, take care that backends will be able to get to their files. Many databases need
access to a UNIX domain socket which should live within the chroot. It is often possible to hardlink such
a socket into the chroot dir.

The default PDNS configuration is best chrooted to./ , which boils down to the configured location of
the controlsocket.

This is achieved by adding the following to pdns.conf:chroot=./, and restarting PDNS.

7.2. Considerations

In general, make sure that the PDNS process is unable to execute commands on your backend database.
Most database backends will only need SELECT privilege. Take care to not connect to your database as
the ’root’ or ’sa’ user, and configure the chosen user to have very slight privileges.

33

Chapter 7. Security settings & considerations

Databases empathic-ally do not need to run on the same machine that runs PDNS! In fact, in benchmarks
it has been discovered that having a separate database machine actually improves performance.

Separation will enhance your database security highly. Recommended.

34

Chapter 8. Virtual hosting

It may be advantageous to run multiple separate PDNS installations on a single host, for example to
make sure that different customers cannot affect each others zones. PDNS fully supports running
multiple instances on one host.

To generate additional PDNS instances, copy the init.d scriptpdns to pdns-name , wherename is the
name of your virtual configuration. Must not contain a - as this will confuse the script.

When you launch PDNS via this renamed script, it will seek configuration instructions not in
pdns.conf but in pdns-name.conf , allowing for separate specification of parameters.

Be aware however that the init.dforce-stopwill kill all PDNS instances!

35

Chapter 9. Performance related settings

Different backends will have different characteristics - some will want to have more parallel instances
than others. In general, if your backend is latency bound, like most relational databases are, it pays to
open more backends.

This is done with thedistributor-threads setting. Of special importance is the choice between 1 or more
backends. In case of only 1 thread, PDNS reverts to unthreaded operation which may be a lot faster,
depending on your operating system and architecture.

Another very important settingcache-ttl. PDNS caches entire packets it sends out so as to save the time
to query backends to assemble all data. The default setting of 10 seconds may be low for high traffic
sites, a value of 60 seconds rarely leads to problems.

To determine if PDNS is unable to keep up with packets, determine the value of theqsize-qvariable.
This represents the number of packets waiting for database attention. During normal operations the
queue should be small.

If it is known that backends will not contain CNAME records, theskip-cnamesetting can be used to
prevent the normally mandatory CNAME lookup that is needed at least once for each DNS query.

Much the same holds for thewildcards setting. On by default, each non-existent query will lead to a
number of additional wildcard queries. If it is known that the backends do not contain wildcard records,
performance can be improved by addingwildcards=no to pdns.conf .

9.1. PacketCache

PDNS by default uses the ’PacketCache’ to recognise identical questions and supply them with identical
answers, without any further processing. The default time to live is 10 seconds. It has been observed that
the utility of the packet cache increases with the load on your nameserver.

Not all backends may benefit from the packetcache. If your backend is memory based and does not lead
to context switches, the packetcache may actually hurt performance.

The size of the packetcache can be observed with/etc/init.d/pdns show packetcache-size

36

Chapter 10. Migrating to PDNS

Before migrating to PDNS a few things should be considered.

PDNS is not a recursing nameserver on its own

If PDNS receives a question for which it is not authoritative, it can’t go out on the net to figure out
an answer. However, because many installations are expected to be both authoritative and recursing,
PDNS can use a separate recursing backend to provide non-authoritative answers. SeeChapter 11
for more details.

PDNS does not operate as a ’slave’ server with all backends

Only the PostgreSQL backend has, of version 1.99.9, the ability to act as a slave.

Wildcard CNAMEs do not work as they do in Bind

Wildcard CNAMEs are a controversial non-standard feature of Bind and perhaps other
nameservers. As yet, PDNS does not support these because of this controversy - discussion with
IETF people has shown that it is not guaranteed that CNAME wildcard records will always work
well.

However, as this is a popular feature, it will be added soon.

To migrate, thezone2sqltool is provided.

10.1. Zone2sql

Zone2sql parses Bind named.conf files and zonefiles and outputs SQL on standard out, which can then
be fed to your database.

Zone2sql understands the Bind master file extension ’$GENERATE’ and will also honour ’$ORIGIN’
and ’$TTL’.

By default, zone2sql outputs code suitable for the mysqlbackend, which can also be read by PostgreSQL
incidentally. The following commands are available:

--bare

Output in a bare format, suitable for further parsing. The output is formatted as follows:

domain_id <TAB>’qname’ <TAB>’qtype’ <TAB>’content’ <TAB>prio <TAB>ttl

--gpgsql

Output in format suitable for the default configuration of the Generic PostgreSQL backend.

37

Chapter 10. Migrating to PDNS

--help

List options.

--mysql

Output in format suitable for the default configuration of the MySQL backend. Default.

--named-conf=...

Parse this named.conf to find locations of zones.

--on-error-resume-next

Ignore missing files during parsing. Dangerous.

--oracle

Output in format suitable for the default configuration of the Generic Oracle backend.

--startid

Supply a value for the first domain_id generated. Defaults at 0.

--verbose

Be verbose during conversion.

--zone=...

Parse only this zone file. Conflicts with--named-confparameter.

--zone-name=...

When parsing a single zone without $ORIGIN statement, set this as the zone name.

38

Chapter 11. Recursion

(only available from 1.99.8 and onwards)

PDNS is an authoritative nameserver. It answers questions with data from its backends. Besides handing
out authoritative answers, DNS also needs so called ’recursion’, where a nameserver gets a question for
which it has no authoritative answer available, necessitating questions to other nameservers.

Although PDNS is an authoritative nameserver, a provision has been made to cater for installations that
require both authoritative DNS and recursion on one IP address.

By specifying therecursor option in the configuration file, questions requiring recursive treatment will
be handed over to the IP address specified. An example configuration might berecursor=130.161.180.1,
which designates 130.161.180.1 as the nameserver to handle recursive queries.

Any recursing nameserver is suitable but we highly advise the use of the DJBDNS dnscache
(http://cr.yp.to/djbdns/dnscache.html).

Take care not to pointrecursor to PDNS, which leads to a very tight packet loop!

By specifyingallow-recursion, recursion can be restricted to netmasks specified. The default is to allow
recursion from everywhere. Example:allow-recursion=192.168.0.0/24, 10.0.0.0/8, 1.2.3.4.

11.1. Details

Questions carry a number of flags. One of these is called ’Recursion Desired’. If PDNS is configured to
allow recursion, AND such a flag is seen, AND the IP address of the client is allowed to recurse via
PDNS, then the packet is handed to the recursing backend.

If a Recursion Desired packet PDNS is configured to allow recursion, but not to the IP address of the
client, resolution will proceed as if the RD flag were unset and the answer will indicate that recursion
was not available.

Recursive questions and answers are not stored in the Packet Cache as recursing backends are generally
well equipped to cache questions themselves.

It is also possible to use a resolver living on a different port. To do so, specify a recursor like this:
recursor=130.161.180.1:5300.

39

Chapter 12. Master/Slave operation &
replication

PDNS offers full master and slave semantics for replicating domain information. Furthermore, PDNS
can benefit from native database replication.

12.1. Native replication

Native replication is the default, unless other operation is specifically configured. Native replication
basically means that PDNS will not send out DNS update notifications, nor will react to them. PDNS
assumes that the backend is taking care of replication unaided.

MySQL replication has proven to be very robust and well suited, even over transatlantic connections
between badly peering ISPs. Other PDNS users employ Oracle replication which also works very well.

To use native replication, configure your backend storage to do the replication and do not configure
PDNS to do so.

12.2. Slave operation

On launch, PDNS requests from all backends a list of domains which have not been checked recently for
changes. This should happen every ’refresh’ seconds, as specified in the SOA record. All domains that
are unfresh are then checked for changes over at their master. If theSOAserial number there is higher,
the domain is retrieved and inserted into the database. In any case, after the check the domain is declared
’fresh’, and will only be checked again after ’refresh’ seconds have passed.

PDNS also reacts to notifies by immediately checking if the zone has updated and if so, retransfering it.

All backends which implement this feature must make sure that they can handle transactions so as to not
leave the zone in a half updated state. MySQL configured with either BerkeleyDB or InnoDB meets this
requirement, as do PostgreSQL and Oracle. The Bindbackend implements transaction semantics by
renaming files if and only if they have been retrieved completely and parsed correctly.

12.2.1. Supermaster automatic provisioning of slaves

PDNS can recognize so called ’supermasters’. A supermaster is a host which is master for domains and
for which we are to be a slave. When a master (re)loads a domain, it sends out a notification to its slaves.
Normally, such a notification is only accepted if PDNS already knows that it is a slave for a domain.

40

Chapter 12. Master/Slave operation & replication

However, a notification from a supermaster carries more persuasion. When PDNS determines that a
notification comes from a supermaster and it is is bonafide, PDNS can provision the domain
automatically, and configure itself as a slave for that zone.

To enable this feature, a backend needs to know about the IP address of the supermaster, and how PDNS
will be listed in the set of NS records remotely, and the ’account’ name of your supermaster. There is no
need to fill this out but it does help keep track of where a domain comes from.

12.3. Master operation

When operating as a master, PDNS sends out notifications of changes to slaves, which react to these
notifications by querying PDNS to see if the zone changed, and transferring its contents if it has.
Notifications are a way to promptly propagate zone changes to slaves, as described in RFC 1996.

Left open by RFC 1996 is who is to be notified - which is harder to figure out than it sounds. All slaves
for this domain must receive a notification but the nameserver only knows the names of the slaves - not
the IP addresses, which is where the problem lies. The nameserver itself might be authoritative for the
name of its secondary, but not have the data available.

To resolve this issue, PDNS tries multiple tactics to figure out the IP addresses of the slaves, and notifies
everybody. In contrived configurations this may lead to duplicate notifications being sent out, which
shouldn’t hurt.

Some backends may be able to detect zone changes, others may chose to let the operator indicate which
zones have changed and which haven’t. Consult the documentation for your backend to see how it
processes changes in zones.

To help deal with slaves that may have missed notifications, or have failed to respond to them, several
override commands are available via the pdns_control tool (Section B.1.1):

pdns_control notifydomain

This instructs PDNS to notify all IP addresses it considers to be slaves of this domain.

pdns_control notify-hostdomain ip-address

This is truly an override and sends a notification to an arbitrary IP address. Can be used in
’also-notify’ situations or when PDNS has trouble figuring out who to notify - which may happen in
contrived configurations.

41

Chapter 13. Fancy records for seamless email
and URL integration

PDNS also supports so called ’fancy’ records. A Fancy Record is actually not a DNS record, but it is
translated into one. Currently, two fancy records are implemented, but not very useful without additional
unreleased software. For completeness, they are listed here. The software will become available later on
and is part of the Express and PowerMail suite of programs.

These records imply extra database lookups which has a performance impact. Therefore fancy records
are only queried for if they are enabled with thefancy-recordscommand inpdns.conf .

MBOXFW

This record denotes an email forward. A typical entry looks like this:

support@yourdomain.com MBOXFW you@yourcompany.com

When PDNS encounters a request for an MX record for yourdomain.com it will, if fancy records
are enabled, also check for the existence of an MBOXFW record ending on ’@yourdomain.com’, in
which case it will hand out a record containing the configuredsmtpredirector. This server should
then also be able to access the PDNS database to figure out where mail to
support@yourdomain.com should go to.

URL

URL records work in much the same way, but for HTTP. A sample record:

yourdomain.com URL http://somewhere.else.com/yourdomain

A URL record is converted into an A record containing the IP address configured with the
urlredirector setting. On that IP address a webserver should live that knows how to redirect
yourdomain.com to http://somewhere.else.com/yourdomain.

42

Chapter 14. Index of all settings

All PDNS settings are listed here, excluding those that originate from backends, which are documented
in the relevant chapters.

allow-axfr-ips=...

When not allowing AXFR (disable-axfr), DO allow from these IP addresses or netmasks.

cache-ttl=...

Seconds to store packets in the PacketCache. SeeSection 9.1.

chroot=...

If set, chroot to this directory for more security. SeeChapter 7.

config-dir=...

Location of configuration directory (pdns.conf)

config-name=...

Name of this virtual configuration - will rename the binary image. SeeChapter 8.

control-console=...

Debugging switch - don’t use.

daemon=...

Operate as a daemon

default-soa-name=...

name to insert in the SOA record if none set in the backend

disable-axfr=...

Do not allow zone transfers

disable-tcp=...

Do not listen to TCP queries. Breaks RFC compliance.

distributor-threads=...

Default number of Distributor (backend) threads to start. SeeChapter 9.

fancy-records=...

Process URL and MBOXFW records. SeeChapter 13.

guardian | --guardian=yes | --guardian=no

Run within a guardian process. SeeSection B.2.

43

Chapter 14. Index of all settings

help

Provide a helpful message

launch=...

Which backends to launch and order to query them in. SeeSection B.3.

load-modules=...

Load this module - supply absolute or relative path. SeeSection B.3.

local-address=...

Local IP address to which we bind. You can specify multiple addresses separated by commas or
whitespace.

local-port=...

The port on which we listen. Only one port possible.

log-failed-updates=...

If set to ’no’, failed Windows Dynamic Updates will not be logged.

logging-facility=...

If set to a a digit, logging is performed under this LOCAL facility. SeeSection 6.3. Available from
1.99.9 and onwards.

loglevel=...

Amount of logging. Higher is more. Do not set below 3

max-queue-length=...

If this many packets are waiting for database attention, consider the situation hopeless and respawn.

module-dir=...

Default directory for modules. SeeSection B.3.

no-config

Do not attempt to read the configuration file.

out-of-zone-additional-processing | --out-of-zone-additional-processing=yes |
--out-of-zone-additional-processing=no

Do out of zone additional processing

queue-limit=...

Maximum number of miliseconds to queue a query. SeeChapter 9.

recursor=...

If set, recursive queries will be handed to the recursor specified here. SeeChapter 11.

44

Chapter 14. Index of all settings

setgid=...

If set, change group id to this gid for more security. SeeChapter 7.

setuid=...

If set, change user id to this uid for more security. SeeChapter 7.

skip-cname | --skip-cname=yes | --skip-cname=no

Do not perform CNAME indirection for each query. Has performance implications. SeeChapter 7.

smtpredirector=...

Our smtpredir MX host. SeeChapter 13.

socket-dir=...

Where the controlsocket will live. SeeSection B.1.

urlredirector=...

Where we send hosts to that need to be url redirected. SeeChapter 13.

webserver | --webserver=yes | --webserver=no

Start a webserver for monitoring. SeeChapter 6.

webserver-address=...

IP Address of webserver to listen on. SeeChapter 6.

webserver-password=...

Password required for accessing the webserver. SeeChapter 6.

webserver-port=...

Port of webserver to listen on. SeeChapter 6.

wildcards=...

Hon or wildcards in the database. On by default. Turning this off has performance implications, see
Chapter 9.

45

Chapter 15. Index of all internal metrics

15.1. Counters & variables

A number of counters and variables are set during PDNS operation. These can be queried with the init.d
dump, showandmrtg commands, or viewed with the webserver.

corrupt-packets

Number of corrupt packets received

latency

Average number of microseconds a packet spends within PDNS

packetcache-hit

Number of packets which were answered out of the cache

packetcache-miss

Number of times a packet could not be answered out of the cache

packetcache-size

Amount of packets in the packetcache

qsize-a

Size of the queue before the transmitting socket.

qsize-q

Number of packets waiting for database attention

servfail-packets

Amount of packets that could not be answered due to database problems

tcp-answers

Number of answers sent out over TCP

tcp-questions

Number of questions received over TCP

timedout-questions

Amount of packets that were dropped because they had to wait too long internally

46

Chapter 15. Index of all internal metrics

udp-answers

Number of answers sent out over UDP

udp-questions

Number of questions received over UDP

15.1.1. Ring buffers

Besides counters, PDNS also maintains the ringbuffers. A ringbuffer records events, each new event gets
a place in the buffer until it is full. When full, earlier entries get overwritten, hence the name ’ring’.

By counting the entries in the buffer, statistics can be generated. These statistics can currently only be
viewed using the webserver and are in fact not even collected without the webserver running.

The following ringbuffers are available:

Log messages (logmessages)

All messages logged

Queries for existing records but for a type we don’t have (noerror-queries)

Queries for, say, the AAAA record of a domain, when only an A is available. Queries are listed in
the following format: name/type. So an AAA query for pdns.powerdns.com looks like
pdns.powerdns.com/AAAA.

Queries for non-existing records within existing domains(nxdomain-queries)

If PDNS knows it is authoritative over a domain, and it sees a question for a record in that domain
that does not exist, it is able to send out an authoritative ’no such domain’ message. Indicates that
hosts are trying to connect to services really not in your zone.

UDP queries received (udp-queries)

All UDP queries seen.

Remote server IP addresses (remotes)

Hosts querying PDNS. Be aware that UDP is anonymous - person A can send queries that appear to
be coming from person B.

Remotes sending corrupt packets (remote-corrupts)

Hosts sending PDNS broken packets, possibly meant to disrupt service. Be aware that UDP is
anonymous - person A can send queries that appear to be coming from person B.

47

Chapter 15. Index of all internal metrics

Remotes querying domains for which we are not auth (remote-unauth)

It may happen that there are misconfigured hosts on the internet which are configured to think that
a PDNS installation is in fact a resolving nameserver. These hosts will not get useful answers from
PDNS. This buffer lists hosts sending queries for domains which PDNS does not know about.

Queries that could not be answered due to backend errors (servfail-queries)

For one reason or another, a backend may be unable to extract answers for a certain domain from
its storage. This may be due to a corrupt database or to inconsistent data. When this happens, PDNS
sends out a ’servfail’ packet indicating that it was unable to answer the question. This buffer shows
which queries have been causing servfails.

Queries for domains that we are not authoritative for (unauth-queries)

If a domain is delegated to a PDNS instance, but the backend is not made aware of this fact,
questions come in for which no answer is available, nor is the authority. Use this ringbuffer to spot
such queries.

48

Chapter 16. Supported record types and their
storage

This chapter lists all record types PDNS supports, and how they are stored in backends. The list is mostly
alphabetical but some types are grouped.

A

The A record contains an IP address. It is stored as a decimal dotted quad string, for example:
’213.244.168.210’.

AAAA

The AAAA record contains an IPv6 address. It is stored as a decimal dotted quad string, for
example: ’3ffe:8114:2000:bf0::1’.

CNAME

The CNAME record specifies the canonical name of a record. It is stored plainly. Like all other
records, it is not terminated by a dot. A sample might be ’webserver-01.yourcompany.com’.

HINFO

Hardware Info record, used to specify CPU and operating system. Stored with a single space
separating these two, example: ’i386 Linux’.

MX

The MX record specifies a mail exchanger host for a domain. Each mail exchanger also has a
priority or preference. This should be specified in the separate field dedicated for that purpose, often
called ’prio’.

NAPTR

Naming Authority Pointer, RFC 2915. Stored as follows:

’100 50 "s" "z3950+I2L+I2C" "" _z3950._tcp.gatech.edu’.

The fields are: order, preference, flags, service, regex, replacement. Note that the replacement is not
enclosed in quotes, and should not be. The replacement may be omitted, in which case it is empty.
See also RFC 2916 for how to use NAPTR for ENUM (E.164) purposes.

NS

Nameserver record. Specifies nameservers for a domain. Stored plainly: ’ns1.powerdns.com’, as
always without a terminating dot.

PTR

Reverse pointer, used to specify the host name belonging to an IP or IPv6 address. Name is stored
plainly: ’www.powerdns.com’. As always, no terminating dot.

49

Chapter 16. Supported record types and their storage

RP

Responsible Person record, as described in RFC 1183. Stored with a single space between the
mailbox name and the more-information pointer. Example ’peter.powerdns.com
peter.people.powerdns.com’, to indicate that peter@powerdns.com is responsible and that more
information about peter is available by querying the TXT record of peter.people.powerdns.com.

SOA

The Start of Authority record is one of the most complex available. It specifies a lot about a
domain: the name of the master nameserver (’the primary’), the hostmaster and a set of numbers
indicating how the data in this domain expires and how often it needs to be checked. Further more,
it contains a serial number which should rise on each change of the domain.

The stored format is:

primary hostmaster serial refresh retry expire default_ttl

Besides the primary and the hostmaster, all fields are numerical. PDNS has a set of default values:

Table 16-1. SOA fields

primary default-soa-nameconfiguration option

hostmaster hostmaster@domain-name

serial 0

refresh 10800 (3 hours)

retry 3600 (1 hour)

expire 604800 (1 week)

default_ttl 3600 (1 hour)

The fields have complicated and sometimes controversial meanings. The ’serial’ field is special. If
left at 0, the default, PDNS will perform an internal list of the domain to determine highest
change_date field of all records within the zone, and use that as the zone serial number. This means
that the serial number is always raised when changes are made to the zone, as long as the
change_date field is being set.

TXT

The TXT field can be used to attach textual data to a domain. Text is stored plainly.

50

Appendix A. Backends in detail

This appendix lists several of the available backends in more detail

A.1. PipeBackend protocol

Questions come in over a file descriptor, by default standard input. Answers are sent out over another file
descriptor, standard output by default.

A.1.1. Handshake

PowerDNS sends out ’HELO\t1’, indicating that it wants to speak the protocol as defined in this
document, version 1. A PowerDNS CoProcess must then send out a banner, prefixed by ’OK\t’,
indicating it launched successfully. If it does not support the indicated version, it should respond with
FAIL, but not exit. Suggested behaviour is to try and read a further line, and wait to be terminated.

A.1.2. Questions

Questions come in three forms and are prefixed by a tag indicating the kind:

Q

Regular queries

AXFR

List requests, which mean that an entire zone should be listed

PING

Check if the coprocess is functioning

The question format:

type qname qclass qtype id ip-address

Fields are tab separated, and terminated with a single \n. Type is the tag above, qname is the domain the
question is about. qclass is always ’IN’ currently, denoting an INternet question. qtype is the kind of
information desired, the record type, like A, CNAME or AAAA. id can be specified to help your
backend find an answer if the id is already known from an earlier query. You can ignore it. ip-address is
the ip-address of the nameserver asking the question.

51

Appendix A. Backends in detail

A.1.3. Answers

Each answer starts with a tag, possibly followed by a TAB and more data.

DATA

Indicating a successful line of DATA

END

Indicating the end of an answer - no further data

FAIL

Indicating a lookup failure. Also serves as ’END’. No further data.

LOG

For specifying things that should be logged. Can only be sent after a query and before an END line.
After the tab, the message to be logged

So letting it be known that there is no data consists if sending ’END’ without anything else. The answer
format:

DATA qname qclass qtype ttl id content

’content’ is as specified inChapter 16. A sample dialogue may look like this:

Q www.ds9a.nl IN CNAME -1 213.244.168.210
DATA www.ds9a.nl IN CNAME 3600 1 ws1.ds9a.nl
Q ws1.ds9a.nl IN CNAME -1 213.244.168.210
END
Q wd1.ds9a.nl IN A -1 213.244.168.210
DATA ws1.ds9a.nl IN A 3600 1 1.2.3.4
DATA ws1.ds9a.nl IN A 3600 1 1.2.3.5
DATA ws1.ds9a.nl IN A 3600 1 1.2.3.6
END

This would correspond to a remote webserver 213.244.168.210 wanting to resolve the IP address of
www.ds9a.nl, and PowerDNS traversing the CNAMEs to find the IP addresses of ws1.ds9a.nl Another
dialogue might be:

Q ds9a.nl IN SOA -1 213.244.168.210
DATA ds9a.nl IN SOA 86400 1 ahu.ds9a.nl ...
END
AXFR 1
DATA ds9a.nl IN SOA 86400 1 ahu.ds9a.nl ...
DATA ds9a.nl IN NS 86400 1 ns1.ds9a.nl
DATA ds9a.nl IN NS 86400 1 ns2.ds9a.nl
DATA ns1.ds9a.nl IN A 86400 1 213.244.168.210
DATA ns2.ds9a.nl IN A 86400 1 63.123.33.135
.
.
END

52

Appendix A. Backends in detail

This is a typical zone transfer.

A.1.4. Sample perl backend

#!/usr/bin/perl -w
sample PowerDNS Coprocess backend
#

use strict;

$|=1; # no buffering

my $line= <>;
chomp($line);

unless($line eq "HELO\t1") {
print "FAIL\n";
print STDERR "Recevied ’$line’\n";
<<>;;
exit;
}
print "OK Sample backend firing up\n"; # print our banner

while(<>)
{
print STDERR "$$ Received: $_";
chomp();
my @arr=split(/\t/);
if(@arr<6) {
print "LOG PowerDNS sent unparseable line\n";
print "FAIL\n";
next;
}

my ($type,$qname,$qclass,$qtype,$id,$ip)=split(/\t/);

if($qtype eq "A" && $qname eq "webserver.example.com") {
print STDERR "$$ Sent A records\n";
print "DATA $qname $qclass $qtype 3600 -1 1.2.3.4\n";
print "DATA $qname $qclass $qtype 3600 -1 1.2.3.5\n";
print "DATA $qname $qclass $qtype 3600 -1 1.2.3.6\n";
}
elsif($qtype eq "CNAME" && $qname eq "www.example.com") {
print STDERR "$$ Sent CNAME records\n";
print "DATA $qname $qclass CNAME 3600 -1 webserver.example.com\n";
}
elsif($qtype eq "MBOXFW") {
print STDERR "$$ Sent MBOXFW records\n";
print "DATA $qname $qclass MBOXFW 3600 -1 powerdns\@example.com\n";

53

Appendix A. Backends in detail

}

print STDERR "$$ End of data\n";
print "END\n";
}

A.2. MySQL backend

Table A-1. MySQL backend capabilities

Native Yes

Master No

Slave No

Superslave No

Autoserial Yes

Case Insensitive

The MySQL Backend as present in PDNS is fixed - it requires a certain database schema to function.
This schema corresponds to this create statement:

CREATE TABLE records (
id int(11) NOT NULL auto_increment,
domain_id int(11) default NULL,
name varchar(255) default NULL,
type varchar(6) default NULL,
content varchar(255) default NULL,
ttl int(11) default NULL,
prio int(11) default NULL,
change_date int(11) default NULL,
PRIMARY KEY (id),
KEY name_index(name),
KEY nametype_index(name,type),
KEY domainid_index(domain_id)
);

Every domain should have a unique domain_id, which should remain identical for all records in a
domain. Records with a domain_id that differs from that in the domain SOA record will not appear in a
zone transfer.

54

Appendix A. Backends in detail

The change_date may optionally be updated to the time_t (the number of seconds since midnight UTC at
the start of 1970), and is in that case used to auto calculate the SOA serial number in case that is
unspecified.

A.2.1. Configuration settings

WARNING! Make sure that you can actually resolve the hostname of your database without accessing
the database! It is advised to supply an IP address here to prevent chicken/egg problems!

mysql-dbname

Database name to connect to

mysql-host

Database host to connect to

mysql-password

Password to connect with

mysql-socket

MySQL socket to use for connecting

mysql-user

MySQL user to connect as

A.2.2. Notes

It has been observed that InnoDB tables outperform the default MyISAM tables by a large margin.
Furthermore, the default number of backends (3) should be raised to 10 or 15 for busy servers.

A.3. Generic MySQL backend

MySQL backend with easily configurable SQL statements, allowing you to graft PDNS on any MySQL
database of your choosing.

Not included as of PDNS 1.99.10.

55

Appendix A. Backends in detail

A.4. Generic PgSQL backend

Table A-2. Generic PgSQL backend capabilities

Module name gpgsql

Native Yes - but PostgreSQL does not replicate

Master Yes

Slave Yes

Superslave Yes

Autoserial Yes

Case All lower

PostgreSQL backend with easily configurable SQL statements, allowing you to graft PDNS on any
PostgreSQL database of your choosing. Because all database schemas will be different, a generic
backend is needed to cover all needs.

The template queries are expanded using the C function ’snprintf’ which implies that substitutions are
performed on the basis of %-place holders. To place a a % in a query which will not be substituted, use
%%. Make sure to fill out the search key, often called ’name’ in lower case!

The default setup conforms to the following schema:

create table domains (
id SERIAL PRIMARY KEY,
name VARCHAR(255) NOT NULL,
master VARCHAR(20) DEFAULT NULL,
last_check INT DEFAULT NULL,
type VARCHAR(6) NOT NULL,
notified_serial INT DEFAULT NULL,
account VARCHAR(40) DEFAULT NULL

);
CREATE UNIQUE INDEX name_index ON domains(name);

CREATE TABLE records (
id SERIAL PRIMARY KEY,
domain_id INT DEFAULT NULL,
name VARCHAR(255) DEFAULT NULL,
type VARCHAR(6) DEFAULT NULL,
content VARCHAR(255) DEFAULT NULL,
ttl INT DEFAULT NULL,
prio INT DEFAULT NULL,
change_date INT DEFAULT NULL,
CONSTRAINT domain_exists
FOREIGN KEY(domain_id) REFERENCES domains(id)

56

Appendix A. Backends in detail

ON DELETE CASCADE
);

CREATE INDEX rec_name_index ON records(name);
CREATE INDEX nametype_index ON records(name,type);
CREATE INDEX domain_id ON records(domain_id);

create table supermasters (
ip VARCHAR(25) NOT NULL,
nameserver VARCHAR(255) NOT NULL,
account VARCHAR(40) DEFAULT NULL

);

GRANT SELECT ON supermasters TO pdns;
GRANT ALL ON domains TO pdns;
GRANT ALL ON domains_id_seq TO pdns;
GRANT ALL ON records TO pdns;
GRANT ALL ON records_id_seq TO pdns;

This schema contains all elements needed for master, slave and superslave operation. Depending on
which features will be used, the ’GRANT’ statements can be trimmed to make sure PDNS cannot
subvert the contents of your database.

Zone2sql with the --gpgsql flag also assumes this layout is in place.

A.4.1. Basic functionality

4 queries are needed for regular lookups, 4 for ’fancy records’ which are disabled by default and 1 is
needed for zone transfers.

The 4+4 regular queries must return the following 6 fields, in this exact order:

content

This is the ’right hand side’ of a DNS record. For an A record, this is the IP address for example.

ttl

TTL of this record, in seconds. Must be a real value, no checking is performed.

prio

For MX records, this should be the priority of the mail exchanger specified.

57

Appendix A. Backends in detail

qtype

The ASCII representation of the qtype of this record. Examples are ’A’, ’MX’, ’SOA’, ’AAAA’.
Make sure that this field returns an exact answer - PDNS won’t recognise ’A ’ as ’A’. This can be
achieved by using a VARCHAR instead of a CHAR.

domain_id

Each domain must have a unique domain_id. No two domains may share a domain_id, all records
in a domain should have the same. A number.

name

Actual name of a record. Must not end in a ’.’ and be fully qualified - it is not relative to the name
of the domain!

Please note that the names of the fields are not relevant, but the order is!

As said earlier, there are 8 SQL queries for regular lookups. If so called ’MBOXFW’ fancy records are
not used, four remain:

basic-query

Default:select content,ttl,prio,type,domain_id,name from records where qtype=’%s’ and
name=’%s’ This is the most used query, needed for doing 1:1 lookups of qtype/name values. First
%s is replaced by the ASCII representation of the qtype of the question, the second by the name.

id-query

Default:select content,ttl,prio,type,domain_id,name from records where qtype=’%s’ and
name=’%s’ and id=%d Used for doing lookups within a domain. First %s is replaced by the
qtype, the %d which should appear after the %s by the numeric domain_id.

any-query

For doing ANY queries. Also used internally. Default:select
content,ttl,prio,type,domain_id,name from records where name=’%s’The %s is replaced by
the qname of the question.

any-id-query

For doing ANY queries within a domain. Also used internally. Default:select
content,ttl,prio,type,domain_id,name from records where name=’%s’ and domain_id=%d
The %s is replaced by the name of the domain, the %d by the numerical domain id.

The last query is for listing the entire contents of a zone. This is needed when performing a zone transfer,
but sometimes also internally:

list-query

To list an entire zone. Default:select content,ttl,prio,type,domain_id,name from records where
domain_id=%d

58

Appendix A. Backends in detail

A.4.2. Fancy records

If PDNS is used with so called ’Fancy Records’, the ’MBOXFW’ record exists which specifies an email
address forwarding instruction, wildcard queries are sometimes needed. This is not enabled by default. A
wildcard query is an internal concept - it has no relation to *.domain-type lookups. You can safely leave
these queries blank.

wildcard-query

Can be left blank. See above for an explanation. Default:select
content,ttl,prio,type,domain_id,name from records where qtype=’%s’ and name like ’%s’

wildcard-id-query

Can be left blank. See above for an explanation. Default:select
content,ttl,prio,type,domain_id,name from records where qtype=’%s’ and name like ’%s’
and domain_id=%d Used for doing lookups within a domain.

wildcard-any-query

For doing wildcard ANY queries. Default:select content,ttl,prio,type,domain_id,name from
records where name like ’%s’

wildcard-any-id-query

For doing wildcard ANY queries within a domain. Default:select
content,ttl,prio,type,domain_id,name from records where name like ’%s’ and domain_id=%d

A.4.3. Settings and specifying queries

The queries above are specified in pdns.conf. For example, the basic-query would appear as:

gpgsql-basic-query=select content,ttl,prio,type,domain_id,name from records where qtype=’%s’ and name=’%s’

Queries can span multiple lines, like this:

gpgsql-basic-query=select content,ttl,prio,type,domain_id,name from records \
where qtype=’%s’ and name=’%s’

Do not wrap statements in quotes as this will not work. Besides the query related settings, the following
configuration options are available:

59

Appendix A. Backends in detail

gpgsql-dbname

Database name to connect to

gpgsql-host

Database host to connect to. WARNING: When specified as a hostname a chicken/egg situation
might arise where the database is needed to resolve the IP address of the database. It is best to
supply an IP address of the database here.

gpgsql-password

Password to connect with

gpgsql-user

PgSQL user to connect as

A.4.4. Native operation

For native operation, either drop the FOREIGN KEY on the domain_id field, or (recommended), make
sure thedomainstable is filled properly. To add a domain, issue the following:

insert into domains (name,type) values (’powerdns.com’,’NATIVE’);

The records table can now be filled by with the domain_id set to the id of the domains table row just
inserted.

A.4.5. Slave operation

The PostgreSQL backend is fully slave capable. To become a slave of the ’powerdns.com’ domain,
execute this:

insert into domains (name,master,type) values (’powerdns.com’,’213.244.168.217’,’SLAVE’);

And wait a while for PDNS to pick up the addition - which happens within one minute. There is no need
to inform PDNS that a new domain was added. Typical output is:

Apr 09 13:34:29 All slave domains are fresh
Apr 09 13:35:29 1 slave domain needs checking
Apr 09 13:35:29 Domain powerdns.com is stale, master serial 1, our serial 0
Apr 09 13:35:30 [gPgSQLBackend] Connected to database
Apr 09 13:35:30 AXFR started for ’powerdns.com’
Apr 09 13:35:30 AXFR done for ’powerdns.com’
Apr 09 13:35:30 [gPgSQLBackend] Closing connection

60

Appendix A. Backends in detail

From now on, PDNS is authoritative for the ’powerdns.com’ zone and will respond accordingly for
queries within that zone.

A.4.6. Superslave operation

To configure a supermaster with IP address 10.0.0.11 which lists this installation as
’autoslave.powerdns.com’, issue the following:

insert into supermasters (’10.0.0.11’,’autoslave.powerdns.com’,’internal’);

From now on, valid notifies from 10.0.0.11 that list a NS record containing ’autoslave.powerdns.com’
will lead to the provisioning of a slave domain under the account ’internal’. SeeSection 12.2.1for details.

A.4.7. Master operation

The PostgreSQL backend is fully master capable with automatic discovery of serial changes. Raising the
serial number of a domain suffices to trigger PDNS to send out notifications. To configure a domain for
master operation instead of the default native replication, issue:

insert into domains (name,type) values (’powerdns.com’,’SLAVE’);

Make sure that the assigned id in the domains table matches the domain_id field in the records table!

A.5. Generic Oracle backend

Oracle backend with easily configurable SQL statements, allowing you to graft PDNS on any Oracle
database of your choosing.

PowerDNS is currently ascertaining if this backend can be distributed in binary form without violating
Oracle licensing.

A.6. DB2 backend

Table A-3. DB2 backend capabilities

Native Yes

61

Appendix A. Backends in detail

Master No

Slave No

Superslave No

Autoserial Yes

PowerDNS is currently ascertaining if this backend can be distributed in binary form without violating
IBM DB2 licensing. If you have a DB2 license, please contact pdns@powerdns.com so we can ship you
a copy of this driver.

The DB2 backend executes the following queries:

Forward Query

select Content, TimeToLive, Priority, Type, ZoneId, 0 as ChangeDate, Name from Records where
Name = ? and type = ?

Forward By Zone Query

select Content, TimeToLive, Priority, Type, ZoneId, 0 as ChangeDate, Name from Records where
Name = ? and Type = ? and ZoneId = ?

Forward Any Query

select Content, TimeToLive, Priority, Type, ZoneId, 0 as ChangeDate, Name from Records where
Name = ?

List Query

select Content, TimeToLive, Priority, Type, ZoneId, 0 as ChangeDate, Name from Records where
ZoneId = ?

Configuration settings:

db2-server

Server name to connect to. Defaults to ’powerdns’. Make sure that your nameserver is not needed
to resolve an IP address needed to connect as this might lead to a chicken/egg situation.

db2-user

Username to connect as. Defaults to ’powerdns’.

db2-password

Password to connect with. Defaults to ’powerdns’.

62

Appendix A. Backends in detail

A.7. Bind zone file backend

Table A-4. Bind zone file backend capabilities

Native Yes

Master No

Slave Experimental

Superslave No

Autoserial No

The BindBackend started life as a demonstration of the versatility of PDNS but quickly gained in
importance when there appeared to be demand for a Bind ’workalike’.

The BindBackend parses a Bind-style named.conf and extracts information about zones from it. It makes
no attempt to honour other configuration flags, which you should configure (when available) using the
PDNS native configuration.

--help=bind

Outputs all known parameters related to the bindbackend

bind-example-zones

Loads the ’example.com’ zone which can be queried to determine if PowerDNS is functioning
without configuring database backends.

bind-config=

Location of the Bind configuration file to parse.

bind-check-interval=

How often to check for zone changes. See ’Operation’ section.

bind-enable-huffman

Enable Huffman compression on zone data. Currently saves around 20% of memory actually used,
but slows down operation somewhat.

A.7.1. Operation

On launch, the BindBackend first parses the named.conf to determine which zones need to be loaded.

63

Appendix A. Backends in detail

These will then be parsed and made available for serving, as they are parsed. So a named.conf with
100.000 zones may take 20 seconds to load, but after 10 seconds, 50.000 zones will already be available.
While a domain is being loaded, it is not yet available, to prevent incomplete answers.

Reloading is currently done only when a request for a zone comes in, and then only after
bind-check-interval seconds have passed after the last check. If a change occurred, access to the zone is
disabled, the file is reloaded, access is restored, and the question is answered. For regular zones,
reloading is fast enough to answer the question which lead to the reload within the DNS timeout.

If bind-check-interval is specified as zero, no checks will be performed.

A.7.2. Performance

The BindBackend does not benefit from the packet cache as it is fast enough on its own. Furthermore, on
most systems, there will be no benefit in using multiple CPUs for the packetcache, so a noticeable
speedup can be attained by specifyingdistributor-threads=1 in pdns.conf .

A.7.3. Master/slave configuration

Currently disabled in prereleases. But seeSection 12.2.

A.8. ODBC backend

Table A-5. ODBC backend capabilities

Native Yes

Master Yes (experimental)

Slave Yes (experimental)

Superslave No

Autoserial Yes

The ODBC backend can retrieve zone information from any source that has a ODBC driver available.

Note: This backend is only available on PowerDNS for Windows.

64

Appendix A. Backends in detail

The ODBC backend needs data in a fixed schema which is the same as the data needed by the MySQL
backend. The create statement will resemble this:

CREATE TABLE records (
id int(11) NOT NULL auto_increment,
domain_id int(11) default NULL,
name varchar(255) default NULL,
type varchar(6) default NULL,
content varchar(255) default NULL,
ttl int(11) default NULL,
prio int(11) default NULL,
change_date int(11) default NULL,
PRIMARY KEY (id),
KEY name_index(name),
KEY nametype_index(name,type),
KEY domainid_index(domain_id)
);

To use the ODBC backend an ODBC source has to be created, to do this see the section Installing
PowerDNS on Microsoft Windows,Chapter 3.

The following configuration settings are available:

odbc-datasource

Specifies the name of the data source to use.

odbc-user

Specifies the username that has to be used to log into the datasource.

odbc-pass

Specifies the user’s password.

odbc-table

Specifies the name of the table containing the zone information.

The ODBC backend has been tested with Microsoft Access, MySQL (via MyODBC) and Microsoft
SQLServer. As the SQL statements used are very basic, it is expected to work with many ODBC drivers.

65

Appendix B. PDNS internals

PDNS is normally launched by the init.d script but is actually a binary calledpdns_server . This file is
started by thestart andmonitor commands to the init.d script. Other commands are implemented using
the controlsocket.

B.1. Controlsocket

The controlsocket is the means to contact a running PDNS daemon, or as we now know, a running
pdns_server . Over this sockets, instructions can be sent using thepdns_control program. Like the
pdns_server , this program is normally accessed via the init.d script.

B.1.1. pdns_control

To communicate with PDNS over the controlsocket, thepdns_controlcommand is used. The init.d
script also calls pdns_control. The syntax is simple:pdns_control command arguments. Currently this
is most useful for telling backends to rediscover domains or to force the transmission of notifications.
SeeSection 12.3.

Besides the commands implemented by the init.d script, for which seeSection 2.3, the following
pdns_control commands are available:

version

returns the version of a running pdns daemon.

B.2. Guardian

When launched by the init.d script,pdns_server wraps itself inside a ’guardian’. This guardian
monitors the performance of the innerpdns_server instance which shows up in the process list of your
OS aspdns_server-instance . It is also this guardian thatpdns_control talks to. ASTOP is
interpreted by the guardian, which causes the guardian to sever the connection to the inner process and
terminate it, after which it terminates itself. The init.d scriptDUMP andSHOW commands need to
access the inner process, because the guardian itself does not run a nameserver. For this purpose, the
guardian passes controlsocket requests to the control console of the inner process. This is the same
console as seen with init.dMONITOR .

66

Appendix B. PDNS internals

B.3. Modules & Backends

PDNS has the concept of backends and modules. Non-static PDNS distributions have the ability to load
new modules at runtime, while the static versions come with a number of modules built in, but cannot
load more.

Related parameters are:

--help

Outputs all known parameters, including those of launched backends, see below.

--launch=backend,backend1,backend1:name

Launches backends. In its most simple form, supply all backends that need to be launched. If you
find that you need to launch single backends multiple times, you can specify a name for later
instantiations. In this case, there are 2 instances of backend1, and the second one is called ’name’.
This means that--backend1-settingis available to configure the first or main instance, and
--backend1-name-settingfor the second one.

--load-modules=/directory/libyourbackend.so

If backends are available in nonstandard directories, specify their location here. Multiple files can
be loaded if separated by commas. Only available in non-static PDNS distributions.

--list-modules

Will list all available modules, both compiled in and in dynamically loadable modules.

To run on the commandline, use thepdns_serverbinary. For example, to see options for the gpgsql
backend, use the following:

$ /usr/sbin/pdns_server --launch=gpgsql --help=gpgsql

B.4. How PDNS translates DNS queries into backend queries

A DNS query is not a straightforward lookup. Many DNS queries need to check the backend for
additional data, for example to determine of an unfound record should lead to an NXDOMAIN (’we
know about this domain, but that record does not exist’) or an unauthoritative response.

Simplified, without CNAME processing and wildcards, the algorithm is like this:

When a query for aqname/qtype tuple comes in, it is requested directly from the backend. If present,
PDNS adds the contents of the reply to the list of records to return. A question tuple may generate
multiple answer records.

67

Appendix B. PDNS internals

Each of these records is now investigated to see if it needs ’additional processing’. This holds for
example for MX records which may point to hosts for which the PDNS backends also contain data. This
involves further lookups for A or AAAA records.

After all additional processing has been performed, PDNS sieves out all double records which may well
have appeared. The resulting set of records is added to the answer packet, and sent out.

A zone transfer works by looking up thedomain_id of the SOA record of the name and then listing all
records of thatdomain_id. This is why all records in a domain need to have the same domain_id.

When a query comes in for an unknown domain, PDNS starts looking for SOA records of all subdomains
of the qname, so no.such.powerdns.com turns into a SOA query for no.such.powerdns.com,
such.powerdns.com, powerdns.com, com, ”. When a SOA is found, that zone is consulted for relevant
NS instructions which lead to a referral. If nothing is found within the zone, an authoritative
NXDOMAIN is sent out.

If no SOA was found, an unauthoritative no-error is returned.

In reality, each query for a question tuple first involves checking for a CNAME, unless that resolution
has been disabled with theskip-cnameoption.

PDNS breaks strict RFC compatability by not always checking for the presence of a SOA record first.
This is unlikely to lead to problems though.

68

Appendix C. Backend writers’ guide

PDNS backends are implemented via a simple yet powerful C++ interface. If your needs are not met by
the PipeBackend, you may want to write your own. Doing so requires a copy of the PowerDNS Open
Source Backend Development kit which can be found on http://downloads.powerdns.com/releases/dev.

A backend contains zero DNS logic. It need not look for CNAMES, it need not return NS records unless
explicitly asked for, etcetera. All DNS logic is contained within PDNS itself - backends should simply
return records matching the description asked for.

Warning

However, please note that your backend can get queries in aNy CAsE! If your
database is case sensitive, like most are (with the notable exception of MySQL),
you must make sure that you do find answers which differ only in case.

C.1. Simple read-only native backends

Implementing a backend consists of inheriting from the DNSBackend class. For read-only backends,
which do not support slave operation, only the following methods are relevant:

class DNSBackend
{
public:

virtual bool lookup(const QType &qtype, const string &qdomain, DNSPacket *pkt_p=0, int zoneId=-1)=0;
virtual bool list(int domain_id)=0;
virtual bool get(DNSResourceRecord &r)=0;
virtual bool getSOA(const string &name, SOAData &soadata);
};

Note that the first three methods must be implemented.getSOA() has a useful default implementation.

The semantics are simple. Each instance of your class only handles one (1) query at a time. There is no
need for locking as PDNS guarantees that your backend will never be called reentrantly.

Some examples, a more formal specification is down below. A normal lookup starts like this:

YourBackend yb;
yb.lookup(QType::CNAME,"www.powerdns.com");

69

Appendix C. Backend writers’ guide

Your class should now do everything to start this query. Perform as much preparation as possible -
handling errors at this stage is better for PDNS than doing so later on. A real error should be reported by
throwing an exception.

PDNS will then call theget() method to getDNSResourceRecords back. The following code
illustrates a typical query:

yb.lookup(QType::CNAME,"www.powerdns.com");

DNSResourceRecord rr;
while(yb.get(rr))

cout <<"Found cname pointing to ’"+rr.content+"’" <<endl;
}

Each zone starts with a Start of Authority (SOA) record. This record is special so many backends will
choose to implement it specially. The defaultgetSOA() method performs a regular lookup on your
backend to figure out the SOA, so if you have no special treatment for SOA records, where is no need to
implement your owngetSOA() .

Besides direct queries, PDNS also needs to be able to list a zone, to do zone transfers for example. Each
zone has an id which should be unique within the backend. To list all records belonging to a zone id, the
list() method is used. Conveniently, the domain_id is also available in theSOADatastructure.

The following lists the contents of a zone called "powerdns.com".

SOAData sd;
if(!yb.getSOA("powerdns.com",sd)) // are we authoritative over powerdns.com?

return RCode::NotAuth; // no

yb.list(sd.domain_id);
while(yb.get(rr))

cout <<rr.qname <<"\t IN " <<rr.qtype.getName() <<"\t" <<rr.content <<endl;

Please note that when so called ’fancy records’ (seeChapter 13) are enabled, a backend can receive
wildcard lookups. These have a % as the first character of the qdomain in lookup.

C.1.1. A sample minimal backend

This backend only knows about the host "random.powerdns.com", and furthermore, only about its A
record:

/* FIRST PART */

70

Appendix C. Backend writers’ guide

class RandomBackend : public DNSBackend
{
public:

bool list(int id) {
return false; // we don’t support AXFR

}

void lookup(const QType &type, const string &qdomain, DNSPacket *p, int zoneId)
{

if(type.getCode()!=QType::A || qdomain!="random.powerdns.com") // we only know about random.powerdns.com A
d_answer=""; // no answer

else {
ostringstream os;
os<<random()%256 <<"." <<random()%256 <<"." <<random()%256 <<"." <<random()%256;
d_answer=os.str(); // our random ip address

}
}

bool get(DNSResourceRecord &rr)
{

if(!d_answer.empty()) {
rr.qname="random.powerdns.com"; // fill in details
rr.qtype=QType::A; // A record
rr.ttl=86400; // 1 day
rr.content=d_answer;

d_answer=""; // this was the last answer

return true;
}
return false; // no more data

}

private:
string d_answer;

};

/* SECOND PART */

class RandomFactory : public BackendFactory
{
public:

RandomFactory() : BackendFactory("random") {}

DNSBackend *make(const string &suffix)
{

return new RandomBackend();
}

};

/* THIRD PART */

class RandomLoader

71

Appendix C. Backend writers’ guide

{
public:

Loader()
{

BackendMakers().report(new RandomFactory);

L<<Logger::Info <<" [RandomBackend] This is the randombackend ("__DATE__", "__TIME__") reporting" <<endl;
}

};

static RandomLoader randomloader;

This simple backend can be used as an ’overlay’. In other words, it only knows about a single record,
another loaded backend would have to know about the SOA and NS records and such. But nothing
prevents us from loading it without another backend.

The first part of the code contains the actual logic and should be pretty straightforward. The second part
is a boilerplate ’factory’ class which PDNS calls to create randombackend instances. Note that a ’suffix’
parameter is passed. Real life backends also declare parameters for the configuration file; these get the
’suffix’ appended to them. Note that the "random" in the constructor denotes the name by which the
backend will be known.

The third part registers the RandomFactory with PDNS. This is a simple C++ trick which makes sure
that this function is called on execution of the binary or when loading the dynamic module.

Please note that a RandomBackend is actually in most PDNS releases. By default it lives on
random.example.com, but you can change that by settingrandom-hostname.

NOTE: this simple backend neglects to handle case properly! For a more complete example, see the full
pdns-dev distribution as found on the website (http://www.powerdns.com/pdns).

C.1.2. Interface definition

Classes:

Table C-1. DNSResourceRecord class

QType qtype QType of this record

string qname name of this record

string content ASCII representation of right hand side

u_int16_t priority priority of an MX record.

u_int32_t ttl Time To Live of this record

int domain_id ID of the domain this record belongs to

time_t last_modified If unzero, last time_t this record was changed

72

Appendix C. Backend writers’ guide

Table C-2. SOAData struct

string nameserver Name of the master nameserver of this zone

string hostmaster Hostmaster of this domain. May contain an @

u_int32_t serial Serial number of this zone

u_int32_t refresh How often this zone should be refreshed

u_int32_t retry How often a failed zone pull should be retried.

u_int32_t expire If zone pulls failed for this long, retire records

u_int32_t default_ttl Difficult

int domain_id The ID of the domain within this backend. Must be
filled!

DNSBackend *db Pointer to the backend that feels authoritative for a
domain and can act as a slave

Methods:

void lookup(const QType &qtype, const string &qdomain, DNSPacket *pkt=0, int zoneId=-1)

This function is used to initiate a straight lookup for a record of name ’qdomain’ and type ’qtype’.
A QType can be converted into an integer by invoking itsgetCode() method and into a string with
thegetCode() .

The original question may or may not be passed in the pointer p. If it is, you can retrieve (from
1.99.11 onwards) information about who asked the question with thegetRemote(DNSPacket *)

method. Alternatively,bool getRemote(struct sockaddr *sa, socklen_t *len) is
available.

Note thatqdomain can be of any case and that your backend should make sure it is in effect case
insensitive. Furthermore, the case of the original question should be retained in answers returned by
get() !

Finally, the domain_id might also be passed indicating that only answers from the indicated zone
need apply. This can both be used as a restriction or as a possible speedup, hinting your backend
where the answer might be found.

If initiated succesfully, as indicated by returningtrue, answers should be made available over the
get() method.

73

Appendix C. Backend writers’ guide

Should throw an AhuException if an error occured accessing the database. Returning otherwise
indicates that the query was started succesfully. If it is known that no data is available, no exception
should be thrown! An exception indicates that the backend considers itself broken - not that no
answers are available for a question.

It is legal to return here, and have the first call toget() return false. This is interpreted as ’no data’

bool list(int domain_id)

Initiates a list of the indicated domain. Records should then be made available via theget()

method. Need not include the SOA record. If it is, PDNS will not get confused.

Should return false if the backend does not consider itself authoritative for this zone. Should throw
an AhuException if an error occured accessing the database. Returning true indicates that data is or
should be available.

bool get(DNSResourceRecord &rr)

Request a DNSResourceRecord from a query started byget() of list() . If this functions returns
true, rr has been filled with data. When it returns false, no more data is available, andrr does not
contain new data. A backend should make sure that it either fills out all fields of the
DNSResourceRecord or resets them to their default values.

The qname field of the DNSResourceRecord should be filled out with the exactqdomain passed to
lookup, preserving its case. So if a query for ’CaSe.yourdomain.com’ comes in and your database
contains dat afor ’case.yourdomain.com’, the qname field of rr should contin
’CaSe.yourdomain.com’!

Should throw an AhuException in case a database error occurred.

bool getSOA(const string &name, SOAData &soadata)

If the backend considers itself authoritative over domainname, this method should fill out the
passedSOADatastructure and return a positive number. If the backend is functioning correctly, but
does not consider itself authoritative, it should return 0. In case of errors, an AhuException should
be thrown.

C.2. Reporting errors

To report errors, the Logger class is available which works mostly like an iostream. Example usage is as
shown above in the RandomBackend. Note that it is very important that each line is ended withendl as

74

Appendix C. Backend writers’ guide

your message won’t be visible otherwise.

To indicate the importance of an error, the standard syslog errorlevels are available. They can be set by
outputtingLogger::Critical , Logger::Error , Logger::Warning , Logger::Notice ,
Logger::Info or Logger::Debug to L, in descending order of graveness.

C.3. Declaring and reading configuration details

It is highly likely that a backend needs configuration details. On launch, these parameters need to be
declared with PDNS so it knows it should accept them in the configuration file and on the commandline.
Furthermore, they will be listed in the output of--help.

Declaring arguments is done by implementing the member functiondeclareArguments() in the
factory class of your backend. PDNS will call this method after launching the backend.

In thedeclareArguments() method, the functiondeclare() is available. The exact definitions:

void declareArguments(const string &suffix="")

This method is called to allow a backend to register configurable parameters. The suffix is the
sub-name of this module. There is no need to touch this suffix, just pass it on to the declare method.

void declare(const string &suffix, const string ¶m, const string &explanation, const string &value)

The suffix is passed to your method, and can be passed on to declare.param is the name of your
parameter.explanation is what will appear in the output of --help. Furthermore, a default value can
be supplied in thevalueparameter.

A sample implementation:

void declareArguments(const string &suffix)
{

declare(suffix,"dbname","Pdns backend database name to connect to","powerdns");
declare(suffix,"user","Pdns backend user to connect as","powerdns");
declare(suffix,"host","Pdns backend host to connect to","");
declare(suffix,"password","Pdns backend password to connect with","");

}

After the arguments have been declared, they can be accessed from your backend using themustDo() ,
getArg() andgetArgAsNum() methods. The are defined as follows in the DNSBackend class:

75

Appendix C. Backend writers’ guide

void setArgPrefix(const string &prefix)

Must be called before any of the other accessing functions are used. Typical usage is
’setArgPrefix("mybackend"+suffix) ’ in the constructor of a backend.

bool mustDo(const string &key)

Returns true if the variablekey is set to anything but ’no’.

const string& getArg(const string &key)

Returns the exact value of a parameter.

int getArgAsNum(const string &key)

Returns the numerical value of a parameter. Usesatoi() internally

Sample usage from the BindBackend, using thebind-example-zonesandbind-config parameters.

if(mustDo("example-zones")) {
insert(0,"www.example.com","A","1.2.3.4");
/* ... */

}

if(!getArg("config").empty()) {
BindParser BP;

BP.parse(getArg("config"));
}

C.4. Read/write slave-capable backends

The backends above are ’natively capable’ in that they contain all data relevant for a domain and do not
pull in data from other nameservers. To enable storage of information, a backend must be able to do
more.

Before diving into the details of the implementation some theory is in order. Slave domains are pulled
from the master. PDNS needs to know for which domains it is to be a slave, and for each slave domain,
what the IP address of the master is.

A slave zone is pulled from a master, after which it is ’fresh’, but this is only temporary. In the SOA
record of a zone there is a field which specifies the ’refresh’ interval. After that interval has elapsed, the

76

Appendix C. Backend writers’ guide

slave nameserver needs to check at the master ff the serial number there is higher than what is stored in
the backend locally.

If this is the case, PDNS dubs the domain ’stale’, and schedules a transfer of data from the remote. This
transfer remains scheduled until the serial numbers remote and locally are identical again.

This theory is implemented by thegetUnfreshSlaveInfos method, which is called on all backends
periodically. This method fills a vector ofSlaveDomains with domains that are unfresh and possibly
stale.

PDNS then retrieves the SOA of those domains remotely and locally and creates a list of stale domains.
For each of these domains, PDNS starts a zonetransfer to resynchronise. Because zone transfers can fail,
it is important that the interface to the backend allows for transaction semantics because a zone might
otherwise be left in a halfway updated situation.

The following excerpt from the DNSBackend shows the relevant functions:

class DNSBackend {
public:

/* ... */
virtual bool getDomainInfo(const string &domain, DomainInfo &di);

virtual bool isMaster(const string &name, const string &ip);
virtual bool startTransaction(const string &qname, int id);
virtual bool commitTransaction();
virtual bool abortTransaction();
virtual bool feedRecord(const DNSResourceRecord &rr);
virtual void getUnfreshSlaveInfos(vector <DomainInfo >* domains);
virtual void setFresh(int id);

/* ... */
}

The mentioned DomainInfo struct looks like this:

Table C-3. DomainInfo struct

int id ID of this zone within this backend

string master IP address of the master of this domain, if any

u_int32_t serial Serial number of this zone

u_int32_t notified_serial Last serial number of this zone that slaves have seen

time_t last_check Last time this zone was checked over at the master
for changes

enum {Master,Slave,Native} kind Type of zone

77

Appendix C. Backend writers’ guide

DNSBackend *backend Pointer to the backend that feels authoritative for a
domain and can act as a slave

These functions all have a default implementation that returns false - which explains that these methods
can be omitted in simple backends. Furthermore, unlike with simple backends, a slave capable backend
must make sure that the ’DNSBackend *db’ field of the SOAData record is filled out correctly - it is used
to determine which backend will house this zone.

bool isMaster(const string &name, const string &ip);

If a backend considers itself a slave for the domainnameand if the IP address inip is indeed a
master, it should return true. False otherwise. This is a first line of checks to guard against reloading
a domain unnecessarily.

void getUnfreshSlaveInfos(vector<DomainInfo>* domains)

When called, the backend should examine its list of slave domains and add any unfresh ones to the
domains vector.

bool getDomainInfo(const string &name, DomainInfo & di)

This is like getUnfreshSlaveInfos, but for a specific domain. If the backend considers itself
authoritative for the named zone,di should be filled out, and ’true’ be returned. Otherwise return
false.

bool startTransaction(const string &qname, int id)

When called, the backend should start a transaction that can be committed or rolled back atomically
later on. In SQL terms, this function shouldBEGIN a transaction andDELETE all records.

bool feedRecord(const DNSResourceRecord &rr)

Insert this record.

bool commitTransaction();

Make the changes effective. In SQL terms, executeCOMMIT .

bool abortTransaction();

Abort changes. In SQL terms, executeABORT .

bool setFresh()

Indicate that a domain has either been updated or refreshed without the need for a retransfer. This
causes the domain to vanish from the vector modified bygetUnfreshSlaveInfos() .

78

Appendix C. Backend writers’ guide

PDNS will always callstartTransaction() before making calls tofeedRecord() . Although it is
likely that abortTransaction() will be called in case of problems, backends should also be prepared
to abort from their destructor.

The actual code in PDNS is currently (1.99.9):

Resolver resolver;
resolver.axfr(remote,domain.c_str());

db->startTransaction(domain, domain_id);

L<<Logger::Error <<"AXFR started for ’" <<domain <<"’" <<endl;
Resolver::res_t recs;

while(resolver.axfrChunk(recs)) {
for(Resolver::res_t::const_iterator i=recs.begin();i!=recs.end();++i) {

db->feedRecord(*i);
}

}
db->commitTransaction();
db->setFresh(domain_id);
L<<Logger::Error <<"AXFR done for ’" <<domain <<"’" <<endl;

C.4.1. Supermaster/Superslave capability

A backend that wants to act as a ’superslave’ for a master should implement the following method:

class DNSBackend
{

virtual bool superMasterBackend(const string &ip, const string &domain, const vector <DNSResourceRecord >&nsset, string *account, DNSBackend **db)
};

This function gets called with the IP address of the potential supermaster, the domain it is sending a
notification for and the set of NS records for this domain at that IP address.

Using the supplied data, the backend needs to determine if this is a bonafide ’supernotification’ which
should be honoured. If it decides that it should, the supplied pointer to ’account’ needs to be filled with
the configured name of the supermaster (if accounting is desired), and the db needs to be filled with a
pointer to your backend.

Supermaster/superslave is a complicated concept, if this is all unclear seeSection 12.2.1.

79

Appendix C. Backend writers’ guide

C.5. Read/write master-capable backends

In order to be a useful master for a domain, notifies must be sent out whenever a domain is changed.
Periodically, PDNS queries backends for domains that may have changed, and sends out notifications for
slave nameservers.

In order to do so, PDNS calls thegetUpdatedMasters() method. Like the
getUnfreshSlaveInfos() function mentioned above, this should add changed domain names to the
vector passed.

The following excerpt from the DNSBackend shows the relevant functions:

class DNSBackend {
public:

/* ... */
virtual void getUpdatedMasters(vector <DomainInfo >* domains);
virtual void setNotifed(int id, u_int32_t serial);

/* ... */
}

These functions all have a default implementation that returns false - which explains that these methods
can be omitted in simple backends. Furthermore, unlike with simple backends, a slave capable backend
must make sure that the ’DNSBackend *db’ field of the SOAData record is filled out correctly - it is used
to determine which backend will house this zone.

void getUpdatedMasters(vector<DomainInfo>* domains)

When called, the backend should examine its list of master domains and add any changed ones to
the DomainInfo vector

bool setNotified(int domain_id, u_int32_t serial)

Indicate that notifications have been queued for this domain and that it need not be considered
’updated’ anymore

C.6. HOWTO & Frequently Asked Questions

Writing backends without access to the full PDNS source means that you need to write code that can be
loaded by PDNS at runtime. This in turn means that you need to use the same compiler that we do. For
linux, this is currently GCC 3.0.4, although any 3.0.x compiler is probably fine. In tests, even 3.1 works.

80

Appendix C. Backend writers’ guide

For FreeBSD we use GCC 2.95.2.

Furthermore, your pdns_server executable must be dynamically linked. The default .rpm PDNS contains
a static binary so you need to retrieve the dynamic rpm or the dynamic tar.gz or the Debian unstable
(’Woody’) deb. FreeBSD dynamic releases are forthcoming.

Q: Will PDNS drivers work with other PDNS versions than they were compiled for?

A: ’Probably’. We make no guarantees. Efforts have been made to keep the interface between the
backend and PDNS as thin as possible. For example, a backend compiled with the 1.99.11 backend
development kit works with 1.99.10. But don’t count on it. We will notify when we think an
incompatible API change has occured but you are best off recompiling your driver for each new
PDNS release.

Q: What is in that DNSPacket * pointer passed to lookup!

A: For reasons outlined above, you should treat that pointer as opaque and only access it via the
getRemote() functions made available and documented above. The DNSPacket class changes a
lot and this level of indirection allows for greater changes to be made without changing the API to
the backend coder.

Q: How is the PowerDNS Open Source Backend Development Kit licensed?

A: MIT X11, a very liberal license permitting basically everything.

Q: Can I release the backend I wrote?

A: Please do! If you tell us about it we will list you on our page.

Q: Can I sell backends I wrote?

A: You can. Again, if you tell us about them we will list your backend on the site. You can keep the
source of your backend secret if you want, or you can share it with the world under any license of
your chosing.

Q: Will PowerDNS use my code in the PDNS distribution?

A: If your license permits it and we like your backend, we sure will. If your license does not permit
it but we like your backend anyway we may contact you.

Q: My backend compiles but when I try to load it, it says ’undefined symbol: _Z13BackendMakersv’

A: Your pdns_server binary is static and cannot load a backend driver at runtime. Get a dynamic
version of pdns, or complain to pdns@powerdns.com if one isn’t available. To check what kind of
binary you have, execute ’file $(which pdns_server)’.

Q: My backend compiles but when I try to load it, it says ’undefined symbol: BackendMakers__Fv’

A: You compiled with the wrong GCC. Use GCC 3.x for Linux, 2.95.x for FreeBSD. You may
want to change g++ to g++-3.0 in the Makefile, or change your path so that 3.x is used.

81

Appendix C. Backend writers’ guide

Q: I downloaded a dynamic copy of pdns_server but it doesn’t run, even without my backend

A: Run ’ldd’ on the pdns_server binary and figure out what libraries you are missing. Most likely
you need to install gcc 3.0 libraries, RedHat 7.1 and 7.2 have packages available, Debian installs
these by default if you use the ’unstable deb’ of PDNS.

Q: What I want can’t be done from a backend - I need the whole PDNS source

A: If you require the source, please contact us (pdns@powerdns.com). All commercial licensees
receive the source, for others we may grant exceptions.

Q: What is this ’AhuException’ I keep reading about?

A: This name has historical reasons and has no significance (http://ds9a.nl).

Q: I need a backend but I can’t write it, can you help?

A: Yes, we also do custom development. Contact us at pdns@powerdns.com.

82

